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3 Python

● Python is a widely used high-level programming 
language for general-purpose programming.

● It was created by Guido van Rossum during 1985-
1990.



4 Interactive Mode Programming

$ python

Python 2.7.12 (default, Nov 19 2016, 06:48:10) 

[GCC 5.4.0 20160609] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>



5 Interactive Mode Programming



6 Interactive Mode Programming

● Use Ctrl + D to exit the interactive mode programming.



7 Script Mode Programming

● Let us write a simple Python program in a script.

● Python files have extension .py. 

$ sudo nano test.py



8 Script Mode Programming



9 Script Mode Programming

● Try to run Python program as follows.

$ python test.py

Hello World



10 Script Mode Programming

● Try another way to execute a Python script.

● Put this command at the first line of any Python script.

1 #!/usr/bin/python

2

3 print("Hello World")



11 Script Mode Programming

● Change the permission of the Python script.

$ sudo chmod +x test.py

$ ./test.py

Hello World



12 Script Mode Programming



13 Lines and Indentation

● Python provides no braces to indicate blocks of code 
for class and function definitions or flow control.

● Blocks of code are denoted by line indentation, which is 
rigidly enforced.



14 Multi-Line Statements

● Statements in Python typically end with a new line.

● Python does, however, allow the use of the line continuation character (\) 
to denote that the line should continue.

>>> total = 1 + \

... 2 + \

... 3

>>> total

6



15 Multi-Line Statements

● Statements contained within the [], {}, or () brackets do 
not need to use the line continuation character.

>>> days = ['Monday', 'Tuesday',

... 'Wednesday', 'Thursday', 'Friday']

>>> days

['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']



16 Quotation in Python

● Python accepts single ('), double (") and triple (''' or """) quotes to 
denote string literals, as long as the same type of quote starts and 
ends the string.

● The triple quotes are used to span the string across multiple lines.

word = 'word'

sentence = "This is a sentence."

paragraph = """This is a paragraph. It is

made up of multiple lines and sentences."""



17 Comments in Python

● A hash sign (#) that is not inside a string literal begins a comment.

● All characters after the # and up to the end of the physical line are 
part of the comment and the Python interpreter ignores them.

#!/usr/bin/python

#First comment

print("Hello world")



18 Multi-line Comments in Python

'''

This is a multi-line

comment.

'''
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Using Python as a Calculator: 
Numbers

● The interpreter acts as a simple calculator: you can type an expression 
at it and it will write the value.

● Expression syntax is straightforward: the operators +, -, *, and /; 
parentheses  ( ) can be used for grouping.

>>> 2 + 2

4

>>> 50 - 5*6

20

>>> (50 - 5.0*6) / 4

5.0

- The integer numbers (e.g. 2, 4, 20) have type 
int. 
- The ones with a fractional part (e.g. 5.0, 1.6) 
have type float.
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Using Python as a Calculator: 
Numbers
>>> 17 / 3  # int / int -> int

5

>>> 17 / 3.0  # int / float -> float

5.666666666666667

>>> 17 // 3.0  # explicit floor division discards the fractional part

5.0

>>> 17 % 3  # the % operator returns the remainder of the division

2

>>> 5 * 3 + 2  # result * divisor + remainder

17
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Using Python as a Calculator: 
Numbers

● With Python, it is possible to use the ** operator to 
calculate powers

>>> 5 ** 2  # 5 squared

25

>>> 2 ** 7  # 2 to the power of 7

128
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Using Python as a Calculator: 
Numbers

● The equal sign (=) is used to assign a value to a 
variable.

>>> width = 20

>>> height = 5 * 9

>>> width * height

900
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Using Python as a Calculator: 
Numbers

● If a variable is not “Defined” (assigned a value), trying 
to use it will give you an error:

>>> n  # try to access an undefined variable

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

NameError: name 'n' is not defined
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Using Python as a Calculator: 
Numbers

● In interactive mode, the last printed expression is 
assigned to the variable _.

● This means that when you are using Pythin as a desk 
calculator, it is somewhat easier to continue 
calculations. >>> tax = 12.5 / 100

>>> price = 100.50
>>> price * tax
12.5625
>>> price + _
113.0625
>>> round(_, 2)
113.06



25
Using Python as a Calculator: 
Strings

● Python can also manipulate strings, which can be 
expressed in several ways.

>>> 'spam eggs'  # single quotes
'spam eggs'
>>> 'doesn\'t'  # use \' to escape the single quote...
"doesn't"
>>> "doesn't"  # ...or use double quotes instead
"doesn't"

>>> '"Yes," he said.'
'"Yes," he said.'
>>> "\"Yes,\" he said."
'"Yes," he said.'
>>> '"Isn\'t," she said.'
'"Isn\'t," she said.'



26
Using Python as a Calculator: 
Strings

● If you don't want characters prefaced by \ to be interpreted 
as special characters, you can use raw strings by adding an 
“r” before the first quote.

>>> print 'C:\some\name'  # here \n means newline!

C:\some

ame

>>> print r'C:\some\name'  # note the r before the quote

C:\some\name



27
Using Python as a Calculator: 
Strings

● Strings can be concatenated (glued together) with the + 
operator, and repeated with *

>>> # 3 times 'un', followed by 'ium'

>>> 3 * 'un' + 'ium'

'unununium'

>>> 't' + 2 * 'o'
'too'
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Using Python as a Calculator: 
Strings

● Strings can be indexed (subscripted), with the first 
character having index 0.

>>> word = 'Python'

>>> word[0]  # character in position 0

'P'

>>> word[5]  # character in position 5

'n'
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Using Python as a Calculator: 
Strings

● Indices may also be negative numbers, to start counting from 
the right

>>> word[-1]  # last character

'n'

>>> word[-2]  # second-last character

'o'

>>> word[-6]

'P'
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Using Python as a Calculator: 
Strings

● In addition to indexing, slicing is also supported.

>>> word[0:2]  # characters from position 0 (included) to 2 (excluded)

'Py'

>>> word[2:5]  # characters from position 2 (included) to 5 (excluded)

'tho'
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Using Python as a Calculator: 
Strings

>>> word[:2] + word[2:]

'Python'

>>> word[:4] + word[4:]

'Python'



32
Using Python as a Calculator: 
Strings

>>> word[:2]   # character from the beginning to position 2 (excluded)

'Py'

>>> word[4:]   # characters from position 4 (included) to the end

'on'

>>> word[-2:]  # characters from the second-last (included) to the end

'on'



33 The built-in function

● len() returns the length of a string

>>> s = 'supercalifragilisticexpialidocious'

>>> len(s)

34



34 Lists

● Python knows a number of compound data types, used 
to group together other values.

● The most versatile is the list, which can be written as a 
list of comma-separated values between square 
brackets.

>>> squares = [1, 4, 9, 16, 25]

>>> squares

[1, 4, 9, 16, 25]



35 Lists

● Lists can be indexed and sliced.

>>> squares[0]  # indexing returns the item

1

>>> squares[-1]

25

>>> squares[-3:]  # slicing returns a new list

[9, 16, 25]



36 Lists

● Lists also supports operations like concatenation

>>> squares + [36, 49, 64, 81, 100]

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]



37 Lists

>>> list = [ 'abcd', 786 , 2.23, 'john', 70.2 ]

>>> type(list)

<type 'list'>

>>> list[0]

'abcd'

>>> type(list[0])

<type 'str'>

>>> type(list[1])

<type 'int'>



38 Lists

● It is possible to change their content

>>> cubes = [1, 8, 27, 65, 125]  # something's wrong here

>>> 4 ** 3  # the cube of 4 is 64, not 65!

64

>>> cubes[3] = 64  # replace the wrong value

>>> cubes

[1, 8, 27, 64, 125]



39 Lists

● You can add new items at the end of the list, by using 
the append() method.

>>> cubes.append(216)  # add the cube of 6

>>> cubes.append(7 ** 3)  # and the cube of 7

>>> cubes

[1, 8, 27, 64, 125, 216, 343]



40 Lists

>>> letters = ['a', 'b', 'c', 'd', 'e', 'f', 
'g']

>>> letters

['a', 'b', 'c', 'd', 'e', 'f', 'g']

>>> # replace some values

>>> letters[2:5] = ['C', 'D', 'E']

>>> letters

['a', 'b', 'C', 'D', 'E', 'f', 'g']

>>> # now remove them

>>> letters[2:5] = []

>>> letters

['a', 'b', 'f', 'g']

>>> # clear the list by replacing all 
the elements with an empty list

>>> letters[:] = []

>>> letters

[]



41 Lists

● It is possible to nest lists 
(create lists containing 
other lists).

>>> a = ['a', 'b', 'c']

>>> n = [1, 2, 3]

>>> x = [a, n]

>>> x

[['a', 'b', 'c'], [1, 2, 3]]

>>> x[0]

['a', 'b', 'c']

>>> x[0][1]

'b'



42 Lists

>>> list = [ 'abcd', 786 , 2.23, 'john', 70.2 ]

>>> type(list)

<type 'list'>

>>> list[0]

'abcd'

>>> type(list[0])

<type 'str'>

>>> type(list[1])

<type 'int'>



43 Tuples

● A tuple is another sequence data type that is similar to 
the list.

● A tuple consists of a number of values separated by 
commas.

● The main differences between lists and tuples are: Lists 
are enclosed in brackets [ ] and their elements and size 
can be changed, while tuples are encludes in 
parentheses ( ) and cannot be updated.



44 Tuples

>>> tuple = ( 'abcd', 786 , 2.23, 'john', 70.2  )

>>> type(tuple[0])

<type 'str'>

>>> type(tuple[1])

<type 'int'>



45 Python Dictionary

● Python's dictionaries are kind of hash table type.

● A dictionary key can be almost any Python type, but 
are usually numbers or strings.

● Dictionaries are enclosed by curly braces { } and values 
can be assigned and accessed using square braces [ ]



46 Python Dictionary

dict = {}

dict['one'] = "This is one"

dict[2]     = "This is two"

tinydict = {'name': 'john','code':6734, 'dept': 'sales'}

print dict['one']       # Prints value for 'one' key

print dict[2]           # Prints value for 2 key

print tinydict          # Prints complete dictionary

print tinydict.keys()   # Prints all the keys

print tinydict.values() # Prints all the values
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● https://www.tutorialspoint.com/python/python_basic_sy
ntax.htm

● https://docs.python.org/2/tutorial/introduction.html#usi
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