
Introduction
to Python
program

Olarik Surinta, PhD.

2 Outline

● Introduction

● Interactive Mode Programming

● Script Mode Programming

● Using Python as a Calculator

● The built-in function

● Lists

● Tuples

3 Python

● Python is a widely used high-level programming
language for general-purpose programming.

● It was created by Guido van Rossum during 1985-
1990.

4 Interactive Mode Programming

$ python

Python 2.7.12 (default, Nov 19 2016, 06:48:10)

[GCC 5.4.0 20160609] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

5 Interactive Mode Programming

6 Interactive Mode Programming

● Use Ctrl + D to exit the interactive mode programming.

7 Script Mode Programming

● Let us write a simple Python program in a script.

● Python files have extension .py.

$ sudo nano test.py

8 Script Mode Programming

9 Script Mode Programming

● Try to run Python program as follows.

$ python test.py

Hello World

10 Script Mode Programming

● Try another way to execute a Python script.

● Put this command at the first line of any Python script.

1 #!/usr/bin/python

2

3 print("Hello World")

11 Script Mode Programming

● Change the permission of the Python script.

$ sudo chmod +x test.py

$./test.py

Hello World

12 Script Mode Programming

13 Lines and Indentation

● Python provides no braces to indicate blocks of code
for class and function definitions or flow control.

● Blocks of code are denoted by line indentation, which is
rigidly enforced.

14 Multi-Line Statements

● Statements in Python typically end with a new line.

● Python does, however, allow the use of the line continuation character (\)
to denote that the line should continue.

>>> total = 1 + \

... 2 + \

... 3

>>> total

6

15 Multi-Line Statements

● Statements contained within the [], {}, or () brackets do
not need to use the line continuation character.

>>> days = ['Monday', 'Tuesday',

... 'Wednesday', 'Thursday', 'Friday']

>>> days

['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']

16 Quotation in Python

● Python accepts single ('), double (") and triple (''' or """) quotes to
denote string literals, as long as the same type of quote starts and
ends the string.

● The triple quotes are used to span the string across multiple lines.

word = 'word'

sentence = "This is a sentence."

paragraph = """This is a paragraph. It is

made up of multiple lines and sentences."""

17 Comments in Python

● A hash sign (#) that is not inside a string literal begins a comment.

● All characters after the # and up to the end of the physical line are
part of the comment and the Python interpreter ignores them.

#!/usr/bin/python

#First comment

print("Hello world")

18 Multi-line Comments in Python

'''

This is a multi-line

comment.

'''

19
Using Python as a Calculator:
Numbers

● The interpreter acts as a simple calculator: you can type an expression
at it and it will write the value.

● Expression syntax is straightforward: the operators +, -, *, and /;
parentheses () can be used for grouping.

>>> 2 + 2

4

>>> 50 - 5*6

20

>>> (50 - 5.0*6) / 4

5.0

- The integer numbers (e.g. 2, 4, 20) have type
int.
- The ones with a fractional part (e.g. 5.0, 1.6)
have type float.

20
Using Python as a Calculator:
Numbers
>>> 17 / 3 # int / int -> int

5

>>> 17 / 3.0 # int / float -> float

5.666666666666667

>>> 17 // 3.0 # explicit floor division discards the fractional part

5.0

>>> 17 % 3 # the % operator returns the remainder of the division

2

>>> 5 * 3 + 2 # result * divisor + remainder

17

21
Using Python as a Calculator:
Numbers

● With Python, it is possible to use the ** operator to
calculate powers

>>> 5 ** 2 # 5 squared

25

>>> 2 ** 7 # 2 to the power of 7

128

22
Using Python as a Calculator:
Numbers

● The equal sign (=) is used to assign a value to a
variable.

>>> width = 20

>>> height = 5 * 9

>>> width * height

900

23
Using Python as a Calculator:
Numbers

● If a variable is not “Defined” (assigned a value), trying
to use it will give you an error:

>>> n # try to access an undefined variable

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'n' is not defined

24
Using Python as a Calculator:
Numbers

● In interactive mode, the last printed expression is
assigned to the variable _.

● This means that when you are using Pythin as a desk
calculator, it is somewhat easier to continue
calculations. >>> tax = 12.5 / 100

>>> price = 100.50
>>> price * tax
12.5625
>>> price + _
113.0625
>>> round(_, 2)
113.06

25
Using Python as a Calculator:
Strings

● Python can also manipulate strings, which can be
expressed in several ways.

>>> 'spam eggs' # single quotes
'spam eggs'
>>> 'doesn\'t' # use \' to escape the single quote...
"doesn't"
>>> "doesn't" # ...or use double quotes instead
"doesn't"

>>> '"Yes," he said.'
'"Yes," he said.'
>>> "\"Yes,\" he said."
'"Yes," he said.'
>>> '"Isn\'t," she said.'
'"Isn\'t," she said.'

26
Using Python as a Calculator:
Strings

● If you don't want characters prefaced by \ to be interpreted
as special characters, you can use raw strings by adding an
“r” before the first quote.

>>> print 'C:\some\name' # here \n means newline!

C:\some

ame

>>> print r'C:\some\name' # note the r before the quote

C:\some\name

27
Using Python as a Calculator:
Strings

● Strings can be concatenated (glued together) with the +
operator, and repeated with *

>>> # 3 times 'un', followed by 'ium'

>>> 3 * 'un' + 'ium'

'unununium'

>>> 't' + 2 * 'o'
'too'

28
Using Python as a Calculator:
Strings

● Strings can be indexed (subscripted), with the first
character having index 0.

>>> word = 'Python'

>>> word[0] # character in position 0

'P'

>>> word[5] # character in position 5

'n'

29
Using Python as a Calculator:
Strings

● Indices may also be negative numbers, to start counting from
the right

>>> word[-1] # last character

'n'

>>> word[-2] # second-last character

'o'

>>> word[-6]

'P'

30
Using Python as a Calculator:
Strings

● In addition to indexing, slicing is also supported.

>>> word[0:2] # characters from position 0 (included) to 2 (excluded)

'Py'

>>> word[2:5] # characters from position 2 (included) to 5 (excluded)

'tho'

31
Using Python as a Calculator:
Strings

>>> word[:2] + word[2:]

'Python'

>>> word[:4] + word[4:]

'Python'

32
Using Python as a Calculator:
Strings

>>> word[:2] # character from the beginning to position 2 (excluded)

'Py'

>>> word[4:] # characters from position 4 (included) to the end

'on'

>>> word[-2:] # characters from the second-last (included) to the end

'on'

33 The built-in function

● len() returns the length of a string

>>> s = 'supercalifragilisticexpialidocious'

>>> len(s)

34

34 Lists

● Python knows a number of compound data types, used
to group together other values.

● The most versatile is the list, which can be written as a
list of comma-separated values between square
brackets.

>>> squares = [1, 4, 9, 16, 25]

>>> squares

[1, 4, 9, 16, 25]

35 Lists

● Lists can be indexed and sliced.

>>> squares[0] # indexing returns the item

1

>>> squares[-1]

25

>>> squares[-3:] # slicing returns a new list

[9, 16, 25]

36 Lists

● Lists also supports operations like concatenation

>>> squares + [36, 49, 64, 81, 100]

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

37 Lists

>>> list = ['abcd', 786 , 2.23, 'john', 70.2]

>>> type(list)

<type 'list'>

>>> list[0]

'abcd'

>>> type(list[0])

<type 'str'>

>>> type(list[1])

<type 'int'>

38 Lists

● It is possible to change their content

>>> cubes = [1, 8, 27, 65, 125] # something's wrong here

>>> 4 ** 3 # the cube of 4 is 64, not 65!

64

>>> cubes[3] = 64 # replace the wrong value

>>> cubes

[1, 8, 27, 64, 125]

39 Lists

● You can add new items at the end of the list, by using
the append() method.

>>> cubes.append(216) # add the cube of 6

>>> cubes.append(7 ** 3) # and the cube of 7

>>> cubes

[1, 8, 27, 64, 125, 216, 343]

40 Lists

>>> letters = ['a', 'b', 'c', 'd', 'e', 'f',
'g']

>>> letters

['a', 'b', 'c', 'd', 'e', 'f', 'g']

>>> # replace some values

>>> letters[2:5] = ['C', 'D', 'E']

>>> letters

['a', 'b', 'C', 'D', 'E', 'f', 'g']

>>> # now remove them

>>> letters[2:5] = []

>>> letters

['a', 'b', 'f', 'g']

>>> # clear the list by replacing all
the elements with an empty list

>>> letters[:] = []

>>> letters

[]

41 Lists

● It is possible to nest lists
(create lists containing
other lists).

>>> a = ['a', 'b', 'c']

>>> n = [1, 2, 3]

>>> x = [a, n]

>>> x

[['a', 'b', 'c'], [1, 2, 3]]

>>> x[0]

['a', 'b', 'c']

>>> x[0][1]

'b'

42 Lists

>>> list = ['abcd', 786 , 2.23, 'john', 70.2]

>>> type(list)

<type 'list'>

>>> list[0]

'abcd'

>>> type(list[0])

<type 'str'>

>>> type(list[1])

<type 'int'>

43 Tuples

● A tuple is another sequence data type that is similar to
the list.

● A tuple consists of a number of values separated by
commas.

● The main differences between lists and tuples are: Lists
are enclosed in brackets [] and their elements and size
can be changed, while tuples are encludes in
parentheses () and cannot be updated.

44 Tuples

>>> tuple = ('abcd', 786 , 2.23, 'john', 70.2)

>>> type(tuple[0])

<type 'str'>

>>> type(tuple[1])

<type 'int'>

45 Python Dictionary

● Python's dictionaries are kind of hash table type.

● A dictionary key can be almost any Python type, but
are usually numbers or strings.

● Dictionaries are enclosed by curly braces { } and values
can be assigned and accessed using square braces []

46 Python Dictionary

dict = {}

dict['one'] = "This is one"

dict[2] = "This is two"

tinydict = {'name': 'john','code':6734, 'dept': 'sales'}

print dict['one'] # Prints value for 'one' key

print dict[2] # Prints value for 2 key

print tinydict # Prints complete dictionary

print tinydict.keys() # Prints all the keys

print tinydict.values() # Prints all the values

47 References

● https://www.tutorialspoint.com/python/python_basic_sy
ntax.htm

● https://docs.python.org/2/tutorial/introduction.html#usi
ng-python-as-a-calculator

●

https://www.tutorialspoint.com/python/python_basic_syntax.htm
https://www.tutorialspoint.com/python/python_basic_syntax.htm
https://docs.python.org/2/tutorial/introduction.html#using-python-as-a-calculator
https://docs.python.org/2/tutorial/introduction.html#using-python-as-a-calculator

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

