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Introduction

- Image recognition is one of the most important steps in the image processing method.
The goal is to extract the important features from the digital image and transform them
to another usable form. One of the challenging problems is an automatic vehicle
detection and classification system. Its goal is to segment and extract the object area
from the video image data and describe that this object is a vehicle or not? what type of
this vehicle is? and what is the other additional information about this vehicle?

- In this proposal, we propose to study and apply several models of Deep Learning (both for
image recognition and image detection) into the automatic vehicle detection and
classification problem. And the final goal is to develop a new deep learning model that can
surpass other deep learning models we also use for this research. Which the experiment
will be separated in three main issues: Vehicle Type Recognition, Vehicle Make
Recognition, and License Plate Recognition.




Objectives

- To study the performance of Deep Learning Algorithms in Image Detection and
Classification problem.

- To take the experiment and analyze the performance of several Deep Learning
Algorithms in the Vehicle Type, Vehicle Make and License plate classification
problem.

- To take the experiment and analyze the performance of several Deep Learning
Algorithms in the Vehicle Type, Vehicle Make and License plate detection
problem.




Overview and Related Work




Vehicle Detection System




Vehicle Type

a) Sedan b) Hatchback

d) Pick-up




TOP 12 CAR SALES VOLUME
By market share in 2017 (11 months)

Brand Sales volume
+ Toyota 208,755
o lsuzu 145,108
+ Honda 113,305
* Mitsubishi 60,824
+ Nissan 52,700
» Ford 49,428
*» Mazda 45,098
* Suzuki 21,898
+ Chevrolet 15,983
*» Mercedes-Benz 12,563
+ Hino 10,782
* MG 10,085

YoY
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Source: Toyota Motor Thailand
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Vehicle Make

TOP CAR EXPORTERS
By maker in 2017 (11 months)

CBU volume and share
Suzuki 34,099 (3%)
=

General Motors
35,610 (3%)

Nissan
66,012
(6%)

Isuzu
76,780 (7%)

Honda
80,608 (8%)

Mazda 86,749 (8%) Ford 118,916 (11%)

Total 1,043,862

Source: Federation of Thai Industries

BMW 10,493 (1%)
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Vehicle License Plate

AY 9999 4 wheel private car, no more than 7 seats (the most common license plate).
NFANMMEMIUAT

AU 9999 Private 2-door pickup truck.

NFINMUNIUAT

AU 9999 Private van or vehicle with more than 7 seats.

NFAMINIUAT

- Temporary red plate issued by car dealer when buying a new car.

Taxis, buses and other chartered vehicles.




Vehicle License Plate




Deep Learning
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CONVOLUTIONAL NEURAL
NETWORKS (CNNs)




Deep Learning for Image Recognition




Alexnet

Source: Alex Krizhevsky, Geoffrey Hinton, and Ilya Sutskever (2010)




VGGNet
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Source: Karen Simonyan and Andrew Zisserman (2014)




GoogLeNet (inception_vi)
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Source: Christian Szegedy et al. (2014)




GoogLeNet (inception_v2,3,4)

Filter Concat

Source: Christian Szegedy et al. (2016)




MobileNets

(c) 1= 1 Convolutional Filters called Pointwise Comvolution in the con-
text of Depthwise Separable Convolution

Source: Andrew G. Howard et al. (2017)




Deep Learning for Image Detection




R-cnn

R-CNN: Region-based Convolutional Network
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Source: Ross Girshick et al. (2014)




FASTER R-cnn
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Source: Shaoqing Ren et al. (2015)




YOLO (You only look once)

Bounding boxes + confidence

S x S grid on input i Final detections

Class probability map

Source: Joseph Redmon et al. (2016)




YOLO (You only look once)
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SSD (single shot multi-box detector)
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Source: Wei Liu et al. (2016)




SSD (single shot multi-box detector)
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Experiments




Image Data collection




Examples of data




Image Classification

(Recognition)
- VGGNet

- GooglLeNet
- MobilesNet

Experimental setup

Image Detection

(Segmentation)
» R-CNN

» Faster R-CNN
» YOLO

» SSD

Focus Problem

» Vehicle Type
» Vehicle Make (Brand)

» License Plate




EVALUATION

The performance of Vehicle Type Recognition: Can deep learning detect and
specify the type of vehicle (Sedan, Hatchback, SUV, Pick-up, and Van) in the
iImage?

Vehicle Make Recognition: Can deep learning recognize the vehicle brand by
only looking from an image?

License Plate Recognition: Can deep learning do a character recognition better
than the state-of-the-art model such as OCR?

Which model is the best model for the vehicle detection and classification
problem?

Can we develop a new model that can surpass all standard nowadays Deep
Learning models?
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