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Abstract 

Plant disease is the most common problem in agriculture. Usually, the symptoms appear on leaves of the 

plants which allow farmers to diagnose and prevent the disease from spreading to other areas. An accurate and 

consistent plant disease recognition system can help prevent the spread of diseases and save maintenance 

costs. In this research, we present a plant leaf disease recognition system using two deep convolutional neural 

networks (CNNs); MobileNetV2 and NasNetMobile. These CNN architectures are designed to be suitable for 

smartphones due to the models being small. We have experimented on training techniques; online, offline, and 

mixed training techniques on two plant leaf diseases. As for data augmentation techniques, we found that the 

combination of rotation, shift, and zoom techniques significantly increases the performance of the CNN 

architectures. The experimental results show that the most accurate algorithm for plant leaf disease recognition 

is NASNetMobile architecture using transfer learning. Additionally, the most accurate result is obtained when 

combining the offline training technique with data augmentation techniques. 

 

Keywords: Plant leaf disease recognition, Deep learning, Convolutional neural networks, Transfer learning, 

Data augmentation 

 

1 Introduction 

 

Deep learning is currently combined with computer 

vision and artificial intelligence to help detect and 

recognize images and videos, as well as to help solve 

problems in different areas. For example, in medicine, 

deep learning is used in medical image classification 

[1], magnetic resonance imaging (MRI) [2], retinal 

image quality [3], brain abnormality classification [4], 

and sperm morphology analysis [5]. In the industrial 

arena, the deep belief network (DBN) is used in the 

process monitoring process employing industrial 

process images [6] and concrete pore structure [7]. 

 In agriculture, deep learning is proposed for use in 

conjunction with the internet of things (IoT) technology 

and unmanned aerial vehicles (UAV) [8] to develop 

intelligent agriculture systems, such as agricultural 

environment prediction with long short-term memory 

(LSTM) and gated recurrent unit (GRU) to analyze data 

for temperature, soil moisture, pollution index, wind 

pressure, wind speed, and wind direction [9]. Deep 

learning and IoT used in agriculture result in higher 

quality agricultural products and also a reduction in the 

cost of farming. 

The main problem that directly affects agricultural 

products is abnormalities caused by plant diseases and 

insect pests. Farmers must have knowledge and 

expertise to diagnose or solve problems in order to 

prevent and resolve them quickly and to avoid the 

spread of disease to a wider area. In this study, plant 

diseases that show leaf symptoms were divided into two 

main characteristics as follows: 1) The stage of disease 

formation may be the initial stage or the stage where a 

disease is widely spread and 2) some plant diseases 

have similar symptoms. If farmers lack the knowledge 

and fail to diagnose plant diseases, yields may be 

damaged. Therefore, many researchers have developed 

plant disease identification based on the leaves of plants 

such as rice, tomato, cucumber, apple, grape, and 

cassava [10]–[13]. Furthermore, most plant diseases 

can be identified by leaf. 

Contribution: This research studies deep learning 

that can be used in plant leaf disease recognition system.   



 

  Applied Science and Engineering Progress, (2022) 

 

 

 

P. Enkvetchakul and O. Surinta, “Effective data augmentation and training techniques for improving deep learning in plant leaf disease 

recognition.” 

 

1. Studying the architecture of convolutional 

neural networks (CNNs) to create smaller models, 

including MobileNetV2 and NASNetMobile, and 

perform scratch and transfer learning for training speed 

and recognition accuracy with the aim of having an 

efficient and small model for use in applications on a 

smartphone. 

2. The performance of the deep learning method 

is improved when combining data augmentation 

techniques and training techniques. In this paper, the 

image manipulation techniques consisting of width and 

height shift, rotation, zoom, brightness, cutout [14], and 

mixup [15] are used. We also test on three training 

techniques, including offline, online, and mixed 

methods. 

3. We examine the proposed deep learning 

method on two sets of plant leaf disease data: the leaf 

disease and iCassava 2019 datasets.We found that the 

NASNetMobile architecture outperforms the 

MobileNetV2 architecture on the two plant leaf disease 

datasets when applying offline training technique and 

data augmentation, including rotation, shift, and zoom. 

Outline of the paper: This paper is organized in the 

following way. Section II, we present a review of 

related work. Section III describes the background 

theory of two deep learning architectures, MobileNetV2 

and NASNetMobile. The datasets which are used in the 

experiments are called plant leaf disease and iCassava 

2019 datasets and are explained in Section IV. The 

experimental results and conclusion are presented in 

Section V and Section VI, respectively. 

 

2 Related Work 

 

2.1 Deep Learning Architectures for Plant Leaf 

Disease Recognition 

 

Deep learning architecture is proposed for plant 

recognition, which can categorize characters of the 

leaf and fruit. Pawara et al. [16] proposed to use deep 

convolutional neural networks (CNNs), including 

AlexNet and GoogLeNet architectures. The accuracy 

performance of these CNN architectures provided 

more than 97% when using the transfer learning 

method. However, it obtained an accuracy of 

approximately 89% when training from scratch. It 

was reported that the transfer learning technique is 

more efficient in recognition and also reduces 

training time. Additionally, CNN architectures are 

used to recognize the plant disease, for example in 

rice [10], cassava [13], tomato, and cucumber leaf 

diseases.  

Ramcharan et al. [13] experimented on the 

cassava disease dataset using Inception v3. This 

CNN architecture obtained an accuracy of 93%. Lu et 

al. [11] presented a new architecture of deep CNN 

architecture consisting of a convolutional layer and 

stochastic pooling layer. The softmax regression was 

proposed as the softmax layer. It was found that the 

deep CNN architecture achieved 95% accuracy, 

while Zhang et al. [10] designed three channels CNN 

for RGB color values, called TCCNN architecture. 

Each color channel was separated to calculate in the 

specific CNN of each channel: CNN1, 2, and 3. The 

final layers of CNN1, 2, and 3 were concatenated and 

delivered to the fully-connected layer for training and 

recognition. The recognition performance with this 

method was 91.15% on the tomato leaf disease 

dataset and 91.16% on the cucumber leaf disease 

dataset. 

Sun et al. [17] presented the BJFU100 dataset, a 

plant dataset taken from a natural environment, with 

10,000 images from 100 plants (ornamental plant 

species) in the Beijing Forestry University campus. 

The ResNet26 architecture was selected to test the 

number of layers consisting of 18, 26, 34, and 50 

Layers. The experiment found that the ResNet26 

architecture using SGD optimizer was fast in training 

with an accuracy of 91.78% on the BJFU100 dataset 

and accuracy of 99.65% on the Flavia dataset. 

 

2.2 Data Augmentation Techniques to Improve 

Deep Learning Performance 

 

Deep learning needs much information to create 

effective models and to avoid overfitting problems. 

However, lack of data may become a big issue in the 

case of models [18], [19]. Hence, the idea of 

generating new data based on existing data, which is 

called data augmentation, was proposed. Taylor and 

Nitschke [18] divided data augmentation into two 

techniques consisting of 1) geometric techniques: 

flipping, rotating and cropping, and 2) image metric 

techniques: color jittering, edge enhancement, and 

fancy principal component analysis. According to an 

experiment on the Caltech101 dataset, it was found 

that recognition of the CNN architecture was only 

48.13% accurate, but when adding data using data 

augmentation with cropping, it has increased 

recognition accuracy to 61.95%. Shorten and 
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Khoshgoftaar [19] described that data augmentation 

is divided into two main categories consisting of 1) 

basic image manipulations: kernel filters, geometric 

transformations, random erasing, mixing images, and 

color space transformations and 2) deep learning 

approaches: adversarial training, neural style transfer 

and generative adversarial networks (GAN). 

Mikołajczyk and Grochowski [20] compared two 

techniques of creating new datasets, consisting of 1) 

traditional transformation: shear, zoom in, reflection, 

rotation, contrast, histogram equalization, white balance 

and sharpen, called data augmentation and 2) GAN, 

which is commonly called data synthesis. GAN has the 

distinctive feature of style transfer, which means 

creating a synthetic image by learning from the original 

content combined with the new style. Therefore, it can 

create unlimited data in new styles, and the newly 

created synthetic image will look more realistic than the 

traditional transformation. 

Using data augmentation in plant recognition, 

Pawara et al. [21] presented 7 data augmentation 

techniques including flip, rotation, blur, contrast, 

scaling, illumination, projective for experimented on the 

AgrilPlant, Folio, and Swedish datasets. The experiment 

found that data augmentation helped to make the CNN 

techniques more accurate. The new images are 

increasing 9-25 times and also directly increasing 

learning time. When using new images created by 

rotation and contrast techniques, the CNN techniques 

obtained 98.6% accuracy compared to 98.33% without 

data augmentation. The image data increased 17 times 

when data augmentation techniques were applied. The 

data used in training increased from 2,100 images to 

35,700 images. For the Folio dataset, it reported that the 

accuracy result obtained 99.42% when applied 

illumination technique and compared to 97.63% without 

using data augmentation. The data increased from 445 

images to 4,005 images. Therefore, it can be concluded 

that data augmentation can increase the efficiency of 

CNN techniques. 

 

3 Convolutional Neural Network Architectures 

 

Convolutional neural network (CNN) architectures 

are part of deep learning. The distinctive feature of 

CNN architecture is the convolution operation and 

the number of layers in the architecture. For example, 

the layer of the VGGNet [22] was designed to have 

16 and 19 layer. The layer of the ResNet [23] is 18, 

34, 50, 101, and 152 layers. Also, the layer of the 

DenseNet [24] is extended up to 264 layers. 

Importantly, the increase in the number of the layer is 

effected to increased network efficiency. However, 

the number of parameters is also increased. These 

architectures require devices that can be computed at 

high  speed,  such  as  the  graphics processing unit 

(GPU),  which  is  not  suitable for smartphones and 

embedded devices [25]. 

This research aims to study the CNN 

architectures that can create a small and efficient 

model suitable for smartphones comprising 

MobileNetV2 [26] and NASNetMobile [27]. 

 

3.1 MobileNetV2 Architecture 

 

Howard et al. [28] designed MobileNets architecture, 

also known as MobileNetV1, that is suitable for 

smartphones and embedded devices. Depthwise 

separable convolutions were proposed, which 

consisted of depthwise convolution and pointwise 

convolution to reduce the dimension of the number of 

layers and reduce the size of the parameter. Then, add 

the batch normalization (BN) layer and the rectified 

linear unit (ReLU) after depthwise separable 

convolutions in every step, as shown in Figure 1. 
 

 
 

Figure 1: MobileNets with the depthwise separable 

convolutions process, which consists of depthwise 

convolution and pointwise convolution. The batch 

normalization layer and the rectified linear unit are 

added at the end of every convolutional layer [28], 

[29]. 

 

When using MobileNets to test on the ImageNet 

dataset, MobileNetV1 had 4.2M parameters, while 

popular architectures GoogLeNet and VGG16 

architectures had 6.8M and 138M, respectively. The 

experiments of the MobileNetV1 on the ImageNet 

dataset obtained the accuracy of 70.6% [28] while the 

GoogLeNet obtained the accuracy of 69.8% 
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Figure 2: MobileNetV2 with inverted residuals. 

Process for making linear bottlenecks with the 

increase in feature map from 24 maps to 144 maps 

and the reduction of feature map from 144 maps to 

24 maps [26]. 

 

Sandler et al. [26] introduced MobileNetV2 by 

increasing invert residuals, a short connection. 

Inverted residuals were designed to manage memory 

problems by reducing the amount of tensor stored on 

memory while processing. Inverted residuals are 

shown in Figure 2. The linear bottlenecks, which is 

an increase in the number of the feature map, such as 

ResNet [23] increases a feature map from 64 to 128, 

256, and 512, respectively. Figure 2 shows the Linear 

Bottlenecks process, which begins with 24 maps and 

expanding it to 144 maps and 144 maps, respectively, 

then reducing the number of feature maps to only 24 

maps before sending it to the next block. Also, the 

example shows that the feature map has changed up 

to 6 times. 

MobileNetV2 architecture can decrease the 

number of parameters and faster in computation time 

than MobileNetV1. The experiments with 

MobileNetV2 obtained an accuracy of 72.0%, which 

was higher than with MobileNetV1, ShuffleNet, and 

NASNet [26]. 

 

3.2 NASNetMobile Architecture 

Zoph and Le [27] designed a neural architecture search 

network, called NASNet architecture, using a recurrent 

neural network (RNN) and reinforcement learning to 

train to obtain the most accurate parameters from 

generated architecture. Creating a CNN architecture 

requires a lot of computation time if the content is large, 

such as the ImageNet dataset. Zoph et al. [30] designed 

the CNN architecture that can search the best 

architecture from a small dataset and transferred the best 

architecture to use to train on the large data, this 

architecture called learning transferable architectures. 

NASNet architecture can be scaled according to the 

amount of data. Figure 3 shows the scalability by 

increasing the number of normal cells and reduction 

cells, which can increase normal cells as required (N 

time), and normal and reduction cells can be obtained 

through a search process using the RNN method. 

 
Figure 3: Scalability of NASNet designed for use with (b) CIFAR10 dataset and (c) ImageNet dataset 

and examples of (a) normal cell and (d) reduction cell [27]. 
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Figure 3 shows an examples of the normal and 

reduction cells obtained by searching with the 

controller RNN for the appropriate architecture from 

operation as follows: 

• Identity 

• 1 x 7 then 7 x 1 convolution 

• 3 x 3 average pooling 

• 5 x 5 max pooling 

• 1 x 1 convolution 

• 3 x 3 depthwise-separable convolution 

• 7 x 7 depthwise-separable convolution 

• 1 x 3 then 3 x 1 convolution 

• 3 x 3 dilated convolution 

• 3 x 3 max pooling 

• 7 x 7 max pooling 

• 3 x 3 convolution 

• 5 x 5 depthwise-separable convolution 

Controller RNN combines two hidden states to 

forward to the next hidden layer, as shown in Figure 

4. 

 
Figure 4: Block of convolution cell obtained from 

searching with RNN [27]. 

 

4 Example of Dataset 

 

In this research, the accuracy of deep learning was 

experimented on two datasets of leaf diseases, 

consisting of the leaf disease dataset and iCassava 

2019 dataset. 

 

4.1 Leaf Disease Dataset 

 

The leaf disease dataset is a collection of images of 

plant diseases, taking into account only the leaves of 

plants. Some images were collected from websites, 

while others were collected using a smartphone to 

take images of diseased leaves. As some plant 

diseases have similar symptoms, e.g. Whitefly-

Transmitted (Figure 5(k)) and woolly aphid (Figure 

5(l)) infestation the disearse may be wrongly 

identified, by inexperienced examinors. Then, all the 

leaf images in the dataset were screened by plant 

disease experts. From the screening process, a total 

of 608 plant leaf images were used, divided into 13 

classes, as detailed in Table 1. The plant leaf images 

were cropped to show only affected areas and 

adjusted to be 224 x 224 pixels, as shown in Figure 5.  

 

 
 

Figure 5: Sample images from leaf disease dataset, 

which consists of 13 classes consisting of (a) mosaic 

disease, (b) yellow leaf spot disease, (c) rust diseases, 

(d) narrow brown spot disease, (e) brown spot 

disease, (f) ringspot disease, (g) plant nutrient 

deficiencies, (h) leaf scald disease, (i) powdery 

mildew disease, (j) leaf miner, (k) whitefly-

transmitted, (l) woolly aphid, and (m) healthy. 
 

Table 1: Details of the leaf disease dataset (consists 

of 13 types; 12 types of plant diseases and one type 

of healthy) and the number of images of leaf diseases 

as each type of plant disease. 
Types of Plants  No. 

 

Types of Plants  No. 

Mosaic Disease 44 
 

Leaf Scald Disease 40 

Yellow Leaf Spot 
Disease 

40 
 

Powdery Mildew 
Disease 

47 

Rust Disease 64 
 

Leaf Miner 43 

Narrow Brown Spot 

Disease 

45 
 

Whitefly-

Transmitted 

51 

Brown Spot Disease 42 
 

Woolly Aphid 49 

Ringspot Disease 43 
 

Healthy 42 

Plant Nutrient 

Deficiencies 

58 
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4.2 iCassava 2019 Dataset 

 

The iCassava 2019 dataset was presented at the sixth 

workshop on fine-grained visual-categorization 

(FGVC6 workshop) at the conference on computer 

vision and pattern recognition (CVPR 2019). This 

dataset contained images of 5 different diseases of 

cassava leaves, comprising 4 types of diseased cassava 

leaves and one type of normal leaf collected from 

Uganda. Farmers took images and sent them to The 

National Crops Resources Research Institute (NaCRRI) 

and AI lab in Makerere University, Kampala [31] for 

experts to sort the cassava leaves. The iCassava 2019 

dataset includes 9,436 annotated images and 12,595 

unlabeled images. In this research, however, we selected 

5,656 annotated images published on the Kaggle 

website that contained four disease types and one 

healthy type, as shown in Table 2, and five types of 

cassava leaf images are shown in Figure 6. 

 

(a) 

    
(b) 

    
(c) 

    
(d)  

    
(e)  

 

Figure 6: Examples of five types of iCassava 2019 

dataset used in the experiment, consisting of (a) cassava 

brown streak disease, (b) cassava mosaic disease, (c) 

cassava bacterial blight, (d) cassava green mite, and (e) 

Healthy. 

 

Table 2: Details of the iCassava 2019 dataset 
(consists of 5 types; 4 types of plant diseases and one 

healthy type) and the number of plant leaf images of 

each type. 
Types of Plants  No. of Images 

Cassava Brown Streak Disease (CBSD) 1,443 

Cassava Mosaic Disease (CMD) 2,658 

Cassava Bacteria Blight (CBB) 466 

Cassava Green Mite (CGM) 773 

Healthy 316 

 

5 Experimental Result 

This research studied two small convolutional neural 

network (CNN) architectures, consisting of 

MobileNetV2 and NASNetMobile, with the aim of 

identifying the best models to develop into 

smartphone applications. Data augmentation, which 

includes brightness, shift, rotation, zoom, cutout, and 

mixup was experimented with two datasets: 1) leaf 

disease dataset with a total of 608 images of diseased 

plant leaves, divided into 13 classes and 2) iCassava 

2019 dataset with a total of 5,656 images, divided 

into five classes. In the experiment, the images were 

resized to 224x224 pixels before training with CNNs 

using TensorFlow's platform. The experiment was 

running on the Linux operating system with an Intel 

(R) Core-i5 computer, 2320 CPU @ 3.00GHz, 12GB 

RAM, GeForce GTX 1070Ti GPU. 

 

5.1 Experiments on Training Technique and Data 

Augmentation 

 

To test the hypothesis that training technique and 

data augmentation allowed CNN architecture to learn 

from limited data and increase the accuracy of 

recognition. First, we selected MobileNetV2 and 

trained the architecture using the fine-tuning 

technique [32]. Second, to demonstrate the 

performance of the training technique, we 

experimented with three training techniques; online, 

offline, and mixed training. Finally, the data 

augmentation, called rotation technique, was chosen 

with a random parameter between 0-170. Three 

training and data augmentation methods are as 

follows: 

1) Offline training and data augmentation; This 

method generates new images in the pre-processing 

data scheme. The original image can create unlimited 

number of new images [19]. For example, from 100 
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original images, each of them can generate three new 

images. In total, the number of new images will 

increase to 400 images ((100 x 3) + 100). Therefore, 

the disadvantage of offline training technique is an 

increasing training time. 

 2) Online training and data augmentation; In 

this method, we combine online training and data 

augmentation to generate a new image in every 

training epoch. Therefore, this method can reduce 

training time. For example, if there are 100 input 

images to be trained by CNN architecture with 200 

epochs, it is equivalent to sending 20,000 images 

(200x100) for training.  

 3) Mixed training and data augmentation; This 

method is a mixture of offline and online training 

techniques. First, in the pre-processing, we use a data 

augmentation technique to generate new images. So, 

this method increases the number of training images. 

Second, to allow the CNN architecture to learn more 

diverse data, new images are regenerated in every 

epoch during training CNN architecture to create the 

best model.  

 In this experiment, we evaluate the 

MobileNetV2 architecture on the leaf disease dataset. 

Data training was carried out using data 

augmentation, called the rotation technique, with a 

random parameter. The leaf disease dataset has 13 

classes and contains 608 images, including 487 

(80%) training images and 121 (20%) test images.  

Table 3 shows the results of different training 

techniques and data augmentation on the leaf disease 

dataset. The results show that offline training and 

data augmentation method when randomly 

generating 15 new images from one original image 

significantly outperforms the other training 

techniques. The accuracy obtained from the offline 

training technique and data augmentation is 76.15%. 

However, it generated 7,792 training images in the 

pre-processing data scheme and took 15h 17min in 

training. The worst performance was obtained while 

training the CNN architecture without data 

augmentation, and the accuracy decreased to 63.08%. 

 As can be seen from the result in Table 3, it can 

be concluded that data augmentation has a direct 

effect on increasing recognition accuracy. Hence, we 

choose the offline training and data augmentation 

(15-image) technique in the following experiments. 

 

 

 

Table 3: Results from three training techniques and 

data augmentation using the rotation technique. The 

results are computed using MobilenetV2 architecture 

on leaf disease dataset. 
Training and Data 

Augmentation 

Techniques 

Training 

Time 

Training 

Samples 

Accuracies 

Offline Training + 

without Data 

Augmentation 

1h 3 min 487 63.08 

Online Training + 

Data Augmentation 

1h 31min 487 74.62 

Offline Training + 

Data Augmentation 

(3-image) 

3h 54min 1,948 70.00 

Offline Training + 

Data Augmentation 

(5-image) 

5h 48min 2,922 72.31 

Offline Training + 
Data Augmentation 

(7-image) 

7h 46min 3,896 72.31 

Offline Training + 

Data Augmentation 

(9-image) 

13h 26min 4,870 74.62 

Offline Training + 

Data 

Augmentation  

(15-image) 

15h 17min 7,792 76.15 

Mixed Training + 

Data Augmentation 

(15-image) 

21h 33min 7,792 74.62 

 

5.2 Experiments on Leaf Disease Dataset 

 

In this section, to compare the performance of CNN 

architectures on leaf disease recognition, using 

MobileNetV2 and NASNetMobile architectures on the 

leaf disease dataset. The objective was to compare these 

two learning methods and show that transfer learning 

shows a better result than training data from scratch on 

the leaf disease dataset. Moreover, for testing the 

performance of data augmentation, we selected the 

basic image manipulations, which consist of seven 

techniques: rotation, brightness, width shift, height shift, 

zoom, cutout, and mixup. The new images are then 

generated according to the random parameters, as 

shown in Table 4. The example of the images obtained 

from data augmentation is shown in Figure 7. 
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(a) 

     
   

 
(b) 

 
  

    

   
(c) 

     
   

 
(d) 

     
   

 
(e) 

     
   

 
(f) 

     
   

 
(g) 

     
   

 
(h) 

     
   

 
(i) 

     
   

 
(j) 

     
   

 
(k) 

 
 

 

Figure 7: Examples of the (a) leaf disease images and 

samples of data augmentation images using     

(b) rotation, (c) brightness, (d) shift, (e) zoom,  

(f) rotation+shift, (g) rotation+zoom, (h) shift+zoom,  

(i) rotation+shift+zoom, (j) cutout, and  

(k) mixup techniques. 

 

Table 4: Data augmentation techniques and parameters 

used in the experiment. 
Data Augmentation Techniques Parameters 

Rotation  [-170,170] 

Brightness [1, 5] 

Width shift [-0.2, +0.2] 

Height shift [-0.2, +0.2] 

Zoom [0.5, 1.5] 

Fill mode Reflect 

Cutout 0.5 

Mixup 0.4 

 

 

Table 5: MobileNetV2 and NASNetMobile 

architectures on the leaf disease dataset using different 

data augmentation techniques. 
Data 

Augmentation 

methods 

MobileNetV2 NASNetMobile 

Time Scratch 
Fine-

Tuning 
Time Scratch 

Fine-

Tuning 

Original image 2h 

12m 

63.08 93.08 4h 

50m 

68.08 92.31 

Brightness  

20h 

15m 

65.39 90.77 

1d 

11h 

30m 

66.92 89.23 

Shift  74.62 90.77 75.39 93.08 

Rotation  77.69 94.62 83.08 93.85 

Zoom  77.69 95.39 64.62 93.01 

Shift + Zoom 82.31 93.08 84.62 92.31 

Rotation + Zoom 79.23 93.85 76.92 93.08 

Rotation + Shift 79.23 95.39 77.69 96.15 

Rotation + Shift + 

Zoom 

77.69 90.77 81.54 95.39 

Cutout 64.06 93.75 77.34 93.75 

Mixup 61.71 89.84 67.18 92.18 

 

Table 5 presents accuracy results and execution 

times for recognition using the leaf disease dataset. The 

results show that using the fine-tuning method always 

performs better than training from scratch (around 15-

30%). Additionally, we examine the individual effect of 

each data augmentation Technique. The results of these 

comparisons show that the zoom technique is the best 

data augmentation, followed by the rotation technique. 

The highest recognition accuracy of 96.15% is obtained 

when combining the rotation and the shift techniques as 

the data augmentation and training with NASNetMobile 

architecture. On the other hand, it can be concluded that 

the brightness technique is an inappropriate data 

augmentation on the leaf disease dataset because this 

technique eliminates important information from an 

image. When comparing model size between two CNN 

architectures, the size of the model obtained by training 

with MobileNetV2 was 18MB, while NASNetMobile 

doubled the model size to 36MB. 

 

5.3 Experiments on iCassava 2019 Dataset 

 

In this experiment, we used 10-fold cross-validation 

in the training scheme. The standard deviation and 

accuracy were reported. We selected the data 

augmentation techniques; zoom, rotation+shift, and 

rotation+shift+zoom based on high accuracy results 

according to the experimental results from Table 5. 

The examples of the images generated from data 

augmentation techniques are shown in Figure 8. We 

performed two CNN architectures; MobileNetV2 and 

NASNetMobile, using the fine-tuning model with 
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specific parameters; Epoch = 2000, Batch Size = 64, 

Learning Rate = 0.001, and Optimizer = Stochastic 

Gradient Descent (SGD) algorithm.  

 

 
 

Figure 8: Examples of the iCassava 2019 dataset and 

samples of data augmentation images. (a) Original, 

(b) zoom, (c) rotation+shift, and (d) 

rotation+shift+zoom images. 

 

In Table 6 we show the experimented results 

with the MobileNetV2 and NASNetMobile on the 

iCassava 2019 dataset. It can be seen from Table 6 

that NASNetMobile architecture with combining 

rotation, shift, and zoom techniques is the best CNN 

architecture on the test set. The NASNetMobile 

outperforms the MobileNetV2 with around 1%. On 

the other hand, the MobileNetV2 obtained a slightly 

better result of around 0.9% than the NASNetMobile 

when testing on 10-fold cross-validation. 

As for the computation time, it was found that the 

MobileNetV2 architecture was 2.25 times faster than 

the NASNetMobile architecture. Also, the model size 

of the MobileNetV2 is smaller than the 

NASNetMobile. 

The average confusion matrices on 10-fold cross-

validation are shown in Figure 10. The data 

augmentation technique is decreased misclassified. For 

recognition performance, the incorrect classification 

from CGM to CMD class is decreased from 19 to 11 

images. Furthermore, the CMD class classifies as the 

CGM class decreased from 13 images to only 4 images. 

The results of the incorrect classification images are 

shown in Figure 9. 

 

   

   
(a)

        
(b)

 
 

Figure 9: Examples of incorrect classification 

on the iCassava 2019 dataset. (a) The images of the 

CMD class that are classified as CGM class. (b) The 

images of the CGM class that are classified as CMD 

class. 

Table 6: A Comparison of the performance of the MobileNetV2 and NASNetMobile architectures on the 

iCassava 2019 dataset. 

Data Augmentation 

methods 

MobileNetV2 NASNetMobile 

Model 

Size 

Model 

Parameters 
Time 10-cv Test 

Model 

Size 

Model 

Parameters 
Time 10-cv Test 

Original 

18 

MB 
2.26 m 

12h 
28 

min 

84.98 ± 

1.75 

81.33 

36 

MB 
4.27 m 

23h 

26m 

78.09 ± 

2.75 

74.65 

Zoom 

4d 

20h 

87.35 ± 

0.14 

80.11 

9d 

22h 

86.95 ± 

0.14 

79.75 

Rotation+Shift 88.55 ± 

1.83 
83.27 87.65 ± 

0.56 
83.98 

Rotation+Shift+Zoom 88.94 ± 

2.39 

83.62 88.05 ± 

1.12 

84.51 
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Figure 10: Confusion matrix of NASNetMobile architecture on the iCassava 2019 dataset. (a) The result of 

original data (b), and data augmentation using rotation, shift, and zoom techniques. 

 

6 Conclusion 

This research studied two deep convolutional neural 

networks (CNNs) proposed to create an efficient 

architecture and a small model that are suitable for 

smartphones and embedded devices and can be 

applied in a plant disease recognition system. In the 

experiment, we performed the CNN architectures on 

two plant disease datasets, consisting of the leaf 

disease and iCassava 2019 datasets. First, to find the 

best framework, we experimented with training 

techniques that allow CNN architectures to learn new 

data from various augmentation techniques. We 

evaluated the performance of the CNN architectures 

using several parameters. The best framework was 

the combination of the offline training technique and 

data augmentation techniques: rotation, shift, and 

zoom. On the contrary, the brightness technique that 

generated a plant leaf image by adding high-intensity 

values affected the plant leaf disease images by 

changing the white spots and the disease spots on the 

plant leaves. Hence, it is inappropriate for plant leaf 

disease recognition. Second, we propose to use two 

CNN architectures, called MobileNetV2 and 

NasNetMobile architectures, for plant leaf disease 

recognition. We are interested in a training scheme: 

fine-tuning and training from scratch, which obtains 

high recognition and requires less computation time. 

As a result, we found that the fine-tuning obtained 

better accuracy than training from scratch and 

decreased computation time. Consequently, 

MobileNetV2 architecture obtains a better result 

when the data augmentation technique is not applied. 

On the other hand, the NasNetMobile outperforms 

the MobileNetV2 when applied data augmentation. 

In future work, we will concentrate on 

improving the performance of plant leaf disease 

recognition. We will study and apply other data 

augmentation techniques such as AutoAugment [33] 

and neural style transfer [34]. 
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