STRATEGIES FOR TRAINING DEEP LEARNING

OLARIK SURINTA

Department of Information Technology, Faculty of Informatics, Mahasarakham University, Thailand

OUTLINE

- INTRODUCTION TO DEEP LEARNING
- TRAIN DEEP LEARNING MODEL
- SCRATCH AND TRANSFER LEARNING
- HYPERPARAMETERS TUNING
- DATA AUGMENTATION
- ENSEMBLE LEARNING
- FUSION CNN
- SNAPSHOT ENSEMBLE CNN

INTRODUCTION TO DEEP LEARNING

Modern deep learning models are designed based on <u>artificial neural networks</u>.

INTRODUCTION TO DEEP LEARNING

Neural Network

INTRODUCTION TO DEEP LEARNING

LeCun et al. (1989) "A single network learns the entire recognition operation, going from the normalized image of character to the final classification."

INTRODUCTION TO DEEP LEARNING

LeCun et al. (1998) proposed a convolutional neural network called LeNet5.

LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. 1998. Gradient-Based Learning Applied to Document Recognition. IEEE. 86, 11 (1998), 2278–2324.

INTRODUCTION TO DEEP LEARNING

AlexNet

Krizhevsky, A., Sutskever, I., Hinton, G. 2012. ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems 25 (NIPS 2012)

ILSVRC. There are roughly 1.2 million training images, 50,000 validation images, and 150,000 testing images.

INTRODUCTION TO DEEP LEARNING

AlexNet

Model	Top-1	Top-5
Sparse coding [2]	47.1%	28.2%
SIFT + FVs [24]	45.7%	25.7%
CNN	37.5%	17.0%

Table 1: Comparison of results on ILSVRC-2010 test set. In *italics* are best resultsachieved by others.

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SIFT + FVs [7]			26.2%
1 CNN	40.7%	18.2%	
5 CNNs	38.1%	16.4%	16.4%
1 CNN*	39.0%	16.6%	
7 CNNs*	36.7%	15.4%	15.3%

Table 2: Comparison of error rates on ILSVRC-2012 validation and test sets. In *italics* are best results achieved by others. Models with an asterisk* were "pre-trained" to classify the entire ImageNet 2011 Fall release. See Section 6 for details.

Krizhevsky, A., Sutskever, I., Hinton, G. 2012. ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems 25 (NIPS 2012)

Simonyan, K. and Zisserman, A. 2014. Very Deep Convolutional Neural Networks for Large-Scale Image Recognition. International Conference on Learning Representations (ICLR). Screen Shot 2565-11-28 at 10.49.24

INTRODUCTION TO DEEP LEARNING

VGG

Table 7: Comparison with the state of the art in ILSVRC classification. Our method is denoted as "VGG". Only the results obtained without outside training data are reported.

Method	top-1 val. error (%)	top-5 val. error (%)	top-5 test error (%)
VGG (2 nets, multi-crop & dense eval.)	23.7	6.8	6.8
VGG (1 net, multi-crop & dense eval.)	24.4	7.1	7.0
VGG (ILSVRC submission, 7 nets, dense eval.)	24.7	7.5	7.3
GoogLeNet (Szegedy et al., 2014) (1 net)	-	7	.9
GoogLeNet (Szegedy et al., 2014) (7 nets)	-	6	.7
MSRA (He et al., 2014) (11 nets)	-	-	8.1
MSRA (He et al., 2014) (1 net)	27.9	9.1	9.1
Clarifai (Russakovsky et al., 2014) (multiple nets)	-	-	11.7
Clarifai (Russakovsky et al., 2014) (1 net)	-	-	12.5
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets)	36.0	14.7	14.8
Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net)	37.5	16.0	16.1
OverFeat (Sermanet et al., 2014) (7 nets)	34.0	13.2	13.6
OverFeat (Sermanet et al., 2014) (1 net)	35.7	14.2	-
Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets)	38.1	16.4	16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net)	40.7	18.2	-

Simonyan, K. and Zisserman, A. 2014. Very Deep Convolutional Neural Networks for Large-Scale Image Recognition. International Conference on Learning Representations (ICLR). Screen Shot 2565-11-28 at 10.49.24

TRAIN DEEP LEARNING MODEL

 In typical deep learning, the model converges to a <u>minimum</u> at the end of the training.

TRAIN DEEP LEARNING MODEL

• The objective of training the deep learning model is to find *minimum training loss/error*.

minimum training loss

https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learningmodel-performance/

TRAIN DEEP LEARNING MODEL

 Overfitting problems appear when the model has a high variance. The model performs well on the training set but does not perform accurately in the validation/test/evaluation/ unseen set.

TRAIN DEEP LEARNING MODEL

The simple way to avoid the overfitting problem is to stop training the model earlier, called early stopping.

TRAIN DEEP LEARNING MODEL

Do we need a ton of training data to train deep learning models?

SCRATCH AND TRANSFER LEARNING

Pawara et al. (2017) trained the deep learning models on the Agriplant dataset, which has <u>2,400 training images</u>.

Your dataset

Pawara, P., Okafor, E., Surinta, O., Schomaker, L.R.B. and Wiering, M.A. (2017). Comparing Local Descriptors and Bags of Visual Words to Deep Convolutional Neural Networks for Plant Recognition, in Pattern Recognition Applications and Methods (ICPRAM), The 6th International Conference on, 479-486.

Number of Iterations: 50,000 epochs

AlexNet and GoogLeNet achieved with an accuracy of 89.53% and 93.33%.

ILSVRC. There are roughly **1.2 million training images**, 50,000 validation images, and 150,000 testing images.

Pretrained model

SCRATCH AND TRANSFER LEARNING

Transfer Learning

Number of Iterations: 20,000 epochs

AlexNet and GoogLeNet achieved with an accuracy of 96.37% and 98.33%.

SCRATCH AND TRANSFER LEARNING

Table 3: Test Accuracy comparison among all techniques on three plant datasets.

Methods	AgrilPlant	LeafSnap	Folio
HOG with KNN	38.13 ± 0.53	58.51 ± 2.47	84.30 ± 1.62
HOG-BOW with MLP	74.63 ± 2.16	79.27 ± 3.36	92.37 ± 1.78
HOG-BOW with SVM	79.43 ± 1.68	72.63 ± 0.38	92.78 ± 2.17
AlexNet scratch	89.53 ± 0.61	76.67 ± 0.56	84.83 ± 2.85
AlexNet fine-tuned	96.37 ± 0.83	89.51 ± 0.75	$\textbf{97.67} \pm \textbf{1.60}$
GoogleNet scratch	93.33 ± 1.24	89.62 ± 0.50	89.75 ± 1.74
GoogleNet fine-tuned	$\textbf{98.33} \pm \textbf{0.51}$	$\textbf{97.66} \pm \textbf{0.34}$	$\textbf{97.63} \pm \textbf{1.84}$

Pawara, P., Okafor, E., **Surinta, O.,** Schomaker, L.R.B. and Wiering, M.A. (2017). Comparing Local Descriptors and Bags of Visual Words to Deep Convolutional Neural Networks for Plant Recognition, in Pattern Recognition Applications and Methods (ICPRAM), The 6th International Conference on, 479-486.

Learning Rate HYPERPARAMETERS TUNING

Learning Rate HYPERPARAMETERS TUNING

2

Optimizers HYPERPARAMETERS TUNING

- Gradient Descent
- Stochastic Gradient Descent (SGD)
- Adagrad
- AdaDelta
- Adam
- RMSProp

Aerial images

Long

Optimizers & Learning rate HYPERPARAMETERS TUNING

TABLE 1. Performances of the convolutional neural network architectures on the EcoCropsAID dataset

Longan		Model	Optimizor	Batch	$\Lambda_{courses}$ (%)	Training	No. of
	a the state of the	Model	Optimizer	size	Accuracy (70)	time	parameters
		InceptionResNetV2	SGD	16	48.00	$29 \mathrm{~mins}$	$54,\!828,\!261$
Rice		MobileNetV2	SGD	32	48.40	$5 \mathrm{~mins}$	$2,\!571,\!589$
		DenseNet201	SGD	64	50.75	$15 \mathrm{~mins}$	$18,\!792,\!389$
	THE REAL PROPERTY AND INCOMENT	Xception	Adam	16	52.99	$21 \mathrm{~mins}$	$21,\!885,\!485$
Rubber		ResNet152V2	SGD	64	59.87	$19 \mathrm{mins}$	$58,\!833,\!413$
		NASNetLarge	Adam	8	62.29	1 h 21 mins	$87,\!356,\!183$
	in all	VGG19	SGD	64	85.92	$12 \mathrm{~mins}$	$20,\!149,\!829$
garcane	11.1	VGG16	SGD	16	87.57	$11 \mathrm{~mins}$	$14,\!840,\!133$

Sugarc

543.

Noppitak, S. and Surinta, O. (2021). Ensemble Convolutional Network Architectures for Land Use Classification in Economic Crops Aerial Images. ICIC Express Letters, 15(6), 531-

Optimizers & Learning rate HYPERPARAMETERS TUNING

TABLE 1. The best training hyperparameters and the accuracy (%) of each single model obtained with 5-fold cross-validation and test set on the mulberry leaf dataset

Madala	Ontimizon	Learning	Batch	Validation	Test accuracy
models	Optimizer	rate	size	(%)	(%)
MobileNetV1	RMSProp	0.0001	8	97.35 ± 0.005	89.83
MobileNetV2	RMSProp	0.0001	16	97.08 ± 0.006	91.19
NASNetMobile	RMSProp	0.0001	8	97.38 ± 0.004	86.65
DenseNet121	SGD	0.01	8	98.61 ± 0.002	90.80
Xception	RMSProp	0.0001	8	97.94 ± 0.006	91.0

Chompookham, T. and Surinta, O. (2021). Ensemble Methods with Deep Convolutional Neural Networks for Plant Leaf Recognition. ICIC Express Letters, 15(6), 553-565.

Cross-validation HYPERPARAMETERS TUNING

https://scikit-learn.org/stable/modules/cross_validation.html

48TH STT

25

DATA AUGMENTATION

Examples of the (a) leaf disease images and samples of data augmentation images using (b) rotation, brightness, (d) sift, (e) zoom, (f) rotation+shift, (g) rotation+zoom, (h) shift+zoom, (i) rotation+shift+zoom, (j) cutout, and (k) mixup techniques.

Table 4: Data augmentation techniques and parametersused in the experiment

Data Augmentation Techniques	Parameters
Rotation	[-170, 170]
Brightness	[1, 5]
Width shift	[-0.2, +0.2]
Height shift	[-0.2, +0.2]
Zoom	[0.5, 1.5]
Fill mode	Reflect
Cutout	0.5
Mixup	0.4

Enkvetchakul, P. and Surinta, O. (2022). Effective Data Augmentation and Training Techniques for Improving Deep Learning in Plant Leaf Disease Recognition. Applied Science and Engineering Progress, 15(3), 3810.

DATA AUGMENTATION

Table 5: MobileNetV2 and NASNetMobilearchitectures on the leaf disease dataset using differentdata augmentation techniques

Data Augmentation	N	IobileNet	t V2	NASNetMobile		
Methods	Time	Scratch	Fine- Tuning	Time	Scratch	Fine- Tuning
Original image	2 h 12 m	63.08	93.08	4 h 50 m	68.08	92.31
Brightness		65.39	90.77		66.92	89.23
Shift	<u>.</u>	74.62	90.77		75.39	93.08
Rotation		77.69	94.62	1 d	83.08	93.85
Zoom		77.69	95.39		64.62	93.01
Shift + Zoom	20 h	82.31	93.08		84.62	92.31
Rotation + Zoom	15 m	79.23	93.85	11 h	76.92	93.08
Rotation + Shift		79.23	95.39	30 m	77.69	96.15
Rotation + Shift + Zoom		77.69	90.77		81.54	95.39
Cutout		64.06	93.75		77.34	93.75
Mixup		61.71	89.84		67.18	92.18

Combination

Enkvetchakul, P. and Surinta, O. (2022). Effective Data Augmentation and Training Techniques for Improving Deep Learning in Plant Leaf Disease Recognition. Applied Science and Engineering Progress, 15(3), 3810.

DATA AUGMENTATION

Model	Ontimizor	Optimizer Batch		Training	No. of
(Data augmentation)	Optimizer	size	Accuracy	time	parameters
NASNetLarge (Hshift)	Adam	8	59.40	1 d 1 h 12 mins	87,356,183
(Institut) NASNetLarge (Botation - Hebift)	Adam	8	79.60	1 d 1 h 29 mins	87,356,183
VGG19	SGD	64	86.50	6 h 23 mins	20,149,829
VGG19 (Hshift)	SGD	64	88.30	6 h 20 mins	20,149,829
VGG16 (Rotation + Hshift)	SGD	16	91.50	6 h 39 mins	14,840,133
VGG16 (Hshift)	SGD	16	91.50	6 h 39 mins	14,840,133

Cassava

Longan

Rice

Rubber

FIGURE 3. Example of data augmentation techniques: (A) Original image, (B) rotation, (C) width shift, (D) height shift, and (E) combination between rotation and width shift

Noppitak, S. and Surinta, O. (2021). Ensemble Convolutional Network Architectures for Land Use Classification in Economic Crops Aerial Images. ICIC Express Letters, 15(6), 531-543.

48TH STT

ENSEMBLE LEARNING

AlexNet

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SIFT + FVs [7]			26.2%
1 CNN	40.7%	18.2%	
5 CNNs	38.1%	16.4%	16.4%
1 CNN*	39.0%	16.6%	
7 CNNs*	36.7%	15.4%	15.3%

Table 2: Comparison of error rates on ILSVRC-2012 validation and test sets. In *italics* are best results achieved by others. Models with an asterisk* were "pre-trained" to classify the entire ImageNet 2011 Fall release. See Section 6 for details.

ENSEMBLE LEARNING

• Majority vote

- Unweighted average
- Weighted average

FIGURE 1. The framework of the proposed ensemble CNNs

Noppitak and Surinta (2021)

TABLE 3. Performances of the ensemble CNN methods on the EcoCropsAID dataset

Model	Er		
Model	Unweighted majority vote Unweighted average		Weighted average
E1	92.00	92.60	92.60
E2	91.90	92.40	92.70
E3	92.30	92.30	92.70
E4	92.50	92.60	92.80

ENSEMBLE LEARNING

Chompookham and Surinta. (2021)

TABLE 5. Performance of the ensemble CNN methods applied on plant leaf datasets

	Test accuracy (%)						
Datasets/DA	Unweighted 1	majority vote	Unweighte	ed average	Weighted	Weighted average	
	3-EnsCNNs	5-EnsCNNs	3-EnsCNNs	3-EnsCNNs 5-EnsCNNs		5-EnsCNNs	
Mulberry leaf dataset							
No DA	92.81	93.65	94.55	94.68	94.49	94.75	
DA	92.61	92.81	94.03	94.23	94.41	94.55	
Tomato leaf d	ataset						
No DA	99.20	99.20	99.79	99.86	99.86	99.79	
DA	99.26	99.20	99.86	99.79	99.93	99.86	
Corn leaf data							
No DA	98.44	98.70	99.45	99.21	99.47	99.24	
DA	98.44	98.70	99.21	99.21	99.31	99.30	

FIGURE 1. Illustration of the fusion CNN architecture

Saichua, P. and Surinta, O. (2022). Comparative Study between Ensemble and Fusion Convolutional Neural Networks for Diabetic Retinopathy Classification. ICIC Express Letters, 16(4), 401-408.

FUSION CNN

TABLE 3. Performance evaluation of the fusion CNNs

Fusion CNNs	Dense	No. of	Dropout	Training	Test		
	sizes	dense layers		\mathbf{time}	Accuracy (%)	Loss	
Xception+InceptionV3	1024	2	0.4	$53 \min$	86.30	0.33	
Xception+DenseNet121	2048	2	0.2	$33 \min$	85.45	0.34	
Xception+ResNet50V2	4096	1	No	$30 \min$	85.11	0.36	
Xception+ResNet50	1024	1	0.1	$32 \min$	85.07	0.4	

TABLE 4. Performance evaluation of the ensemble CNNs

	Accuracy (%) of ensemble learning methods				
Ensemble CNNs	Unweighted	Weighted	Weight		
	average method	average method	parameters		
Xception+InceptionV3	85.92	86.11	0.6, 0.4		
ResNet50+DenseNet121	84.30	84.81	0.3, 0.7		
ResNet50V2+DenseNet121	84.22	84.39	0.3, 0.7		
ResNet50 + ResNet50V2	83.65	83.73	0.3, 0.7		

Learning rate schedule

SNAPSHOT ENSEMBLE CNN

Huang, et al. (2017). Snapshot Ensembles: Train 1, get M for free. International Conference on Learning Representations

SNAPSHOT ENSEMBLE CNN

FIGURE 2. Illustration of the step decay schedule.

Noppitak, S. and Surinta, O. (2022). dropCyclic: Snapshot Ensemble Convolutional Neural Network Based on a New Learning Rate Schedule for Land Use Classification. IEEE Access, 10, 60725-60737.

SNAPSHOT ENSEMBLE CNN

TABLE 3. Classification performances (LD, mean validation accuracy, standard deviation and test accuracy) of the snapshot ensemble CNN using different learning rate schedules: CCA CCA, MMCCLP, and dropCyclic and training with different state-of-the-art CNNs: MobileNetV2, VGG16, VGG19, on the UCM dataset.

CNNs	LR	LD	Validation	Test
	methods			
MobileNetV2	2 CCA	0.0422	97.30±0.0085	97.14
	MMCCLR	0.0626	$97.10{\pm}0.0081$	96.43
	dropCyclic	0.0560	97.38±0.0050	97.38
VGG16	CCA	0.1650	$95.47 {\pm} 0.0050$	93.57
	MMCCLR	0.1371	$95.83{\pm}0.0042$	93.10
	dropCyclic	0.1965	96.51±0.0054	92.62
VGG19	CCA	0.2285	96.98±0.0097	93.10
	MMCCLR	0.1475	96.03±0.0056	93.57
	dropCyclic	0.0896	96.63±0.0020	94.76

CONCLUSION

- There are many methods to improve the performance of deep learning models, such as tuning the hyperparameters (learning rate, optimization algorithms), increasing the number of training data, generating new data based on existing data, etc.
- However, the deep learning model will face the overfitting problem that it always obtains high accuracy performance and worsens when used in the real world.

THANK YOU FOR YOUR ATTENTION