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ABSTRACT 
The real-world food image is a challenging problem for food 

image classification, because food images can be captured from 

different perspective and patterns. Also, many objects can appear 

in the image, not just foods. To recognize food images, in this 

paper, we propose a modified MobileNet architecture that is 

applies the global average pooling layers to avoid overfitting the 

food images, batch normalization, rectified linear unit, dropout 

layers, and the last layer is softmax. The state-of-the-art and the 

proposed MobileNet architectures are trained according to the 

fine-tuned model. The experimental results show that the 

proposed version of the MobileNet architecture achieves 

significantly higher accuracies than the original MobileNet 

architecture. The proposed MobileNet architecture significantly 

outperforms other architectures when the data augmentation 

techniques are combined.    

CCS Concepts 
• Computing methodologies ➝ Object recognition                     

• Computing methodologies ➝ Neural networks. 

Keywords 
Food Image classification; Convolutional Neural Network; 

MobileNet Architecture; Data Augmentation. 

1. INTRODUCTION 
Nowadays, people are becoming obese and overweight due to the 

imbalance between calorific intake and use. This increases the risk 

of other diseases such as diabetes, sleep apnea, acid reflux, and 

heart disease [12]. Nutritionists advise obese and overweight 

people to exercise and to monitor their daily consumption of 

calories [4]. Due to the assessment of calorie intakes into the body, 

Ege and Yani [3] proposed a multi-task convolutional neural 

network (CNN) method that allows the CNN architecture to learn 

from food calories, categories, ingredients, and cooking directions 

data. Furthermore, Myers et al. [13] presented a system that 

recognizes the contents of food from a single image, and then 

predict calories using the CNN based classifier. Then, people can 

estimate calories from food images. 

In recent years, most research in food image classification has 

focused on hand-crafted features that consist of a color histogram 

[10,21], local binary pattern (LBP) [10,15], scale invariant feature 

transform (SIFT) [10], histogram of oriented gradients (HOG) 

[10,21], and speeded up robust feature (SURF) [2]. These hand-

crafted methods are combined with machine learning algorithms 

to classify food images.  

Due to the large-scale of food image datasets, researchers 

proposed to use deep learning algorithms to learn from the large-

scale food image dataset such as the ETH Food-101 dataset which 

contains 101,000 images from 101 food categories; Food-256 

dataset, a data set of 256 food categories with approximately 

32,000 food images [2,5,7]. Yanai and Kawano [21] used a pre-

trained model of AlexNet architecture for the feature extraction 

method. This method extracts 6,144 features from the image. In 

[5], the data augmentation techniques consist of brightness, 

contrast, saturation, and hue and are applied to food images before 

feeding to the Inception V3 network. Ming et al. [11] proposed the 

DietLens, which is a prototype of tracking dietary intake system 

for Singapore hawker food. The core architecture of the DietLens 

is the ResNet-50, which contains 50 convolutional layers and one 

fully connected layer and experiments on 87,470 images. The 

FoodNet [17], which is an ensemble deep neural network, is 

proposed to classify the Food-101 dataset. This network combined 

three well-known networks (AlexNet, GoogLeNet, and ResNet) as 

the ensemble network. The output of three networks and 

concatenate are passed to a fully connected layer to classify food 

images. 

 

 (A)                       (B) 

Figure 1. Example of ETH Food-101 dataset. a) The apple pie 

category and b) the similarity shape between two categories of 

apple pie (first row) and Baklava (second row). 

The challenge of food image classification is that food images 

from the same category are captured with different patterns, 

shapes, and perspective, accordingly to the people who take the 

image. For example, there are many objects such as forks and 

spoons, glasses, and bottles that appear in the image. For example 

of ETH Food-101 dataset, has many different apple pie images 

(that include other objects, patterns, shapes, and scenes) that 
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appear in the apple pie category, as shown in Figure 1a). Even the 

similarity shape and pattern between the two categories of apple 

pie and Baklava, as shown in Figure 1b). These kinds of images 

can decrease the performance of the food image classification. 

Related work: Hand-crafted feature extraction methods [14] are 

used in many image classification applications. In [15], two 

feature extraction methods consisting of a non-redundant local 

binary pattern (NRLBP) and the shape context descriptor of the 

interest points, called structure information are used to describe 

the local appearance information of food images. The achieved 

accuracy shows that the combination of the two features can 

improve classification performance. In [21], the first step uses, the 

color patches and RootHOG patches, (which is a square root of 

the L1 normalized HOG) to extract the data from the images. In 

the second step, the information from the first step is sent to a 

Fisher vector to encoding and used as the feature vector. This 

method achieved an accuracy of 65.3% on the UEC Food-100 

dataset. In addition, Martinel et al. [10] presented the supervised 

extreme learning committee approach (ELM) to learning attributes 

of color, shape, texture, and local features. Then, the output of the 

ELMs is fed into the structured support vector machine (SVM) to 

classify food images. The performance achieved by this method is 

55.89% and 84.34% on ETH Food-101 and UEC Food-100, 

respectively. 

Nowadays, convolutional neural networks (CNNs), which are the 

most successful, and widely used for image classification 

problems [19]. Although, many CNN architectures can compute 

due to the large-scale images [19] and obtain very high accuracy 

[9,17]. In the area of food image classification, state-of-the-art 

CNN architectures such as AlexNet, GoogLeNet, and ResNet are 

proposed [17], although, the experimental results obtained with 

tem did not obtain high accuracy. Pandey et al. [17] invented a 

CNN-based ensemble network, called FoodNet architecture. This 

architecture consists of a fine-tuned model of AlexNet, 

GoogLeNet, and ResNet. The networks compute feature vectors 

and then concatenate all of the feature vectors, and a rectified 

linear unit (ReLU) used as a non-linear activation. Then, data is 

passed to a fully connected layer and the softmax function used to 

predict the output of the food image. The experiments showed that 

the FoodNet architecture obtained the Top-1 accuracy of 72.12% 

on ETH Food-101 and 73.50% on Indian food database. Also, the 

result was not good when the feature vector from the FoodNet 

architecture was fed into the SVM classifier. 

As for the pre-trained model, In [21], the fine-tuning of the deep 

CNN pre-trained model based on AlexNet network, called DCNN 

was proposed to examine three food image datasets. The results 

showed that the fine-tuned DCNN achieved the Top-1 accuracy of 

78.77%, 67.57%, and 70.40% on UEC Food-100, UEC Food-256, 

and ETH Food-101 datasets, respectively. The Inception networks 

[5,8] are proposed to address the food image classification. Lin et 

al. [8] presented the DeepFood network to recognize the food 

image for computer-aided dietary assessment. The DeepFood 

network, which is applied to an Inception module by adding 1x1 

convolutional layers and then connected with two inception 

modules via an additional max-pooling layer. The best Top-1 

accuracy results on UEC Food-256, UEC Food-100, and ETH 

Food-101 were 54.7%, 76.3%, and 77.4%, respectively. 

Hassannejad et al. [5] invented a deep network with 54 layers 

based on Inception V3 to classify three well-known food image 

datasets and achieved 88.28% on ETH Food-101, 81.45% on UEC 

Food-100, and 76.17% on UEC Food-256 datasets as top-1 

accuracy. 

Additionally, data augmentation is proposed to address the 

problem of insufficient data and to increase the performance of 

the image classification [1,22]. The data augmentation is also 

widely used in plant [18] and animal [16], and food [22] image 

recognition.  

Contributions: In this paper, our main contribution is the use of 

the state-of-the-art deep convolutional neural network, called 

MobileNet architecture and our proposed MobileNet architecture 

is applied to recognize a challenging ETH food image dataset that 

contains 101 food categories.  

In our proposed version, we reduce the number of parameters in 

the model by replacing the average pooling with the global 

average pooling (GAP) layers; then the overfitting is decreased. 

Subsequently, the batch normalization (BN), rectified linear unit 

(ReLU), and dropout layers, are utilized instead of the fully 

connected layers. Finally, the softmax layer is calculated. The 

results show that our proposed MobileNet architecture 

outperforms when compared to the original MobileNet 

architecture. 

Moreover, we evaluate most effective data augmentation 

techniques to random creating images in the ETH food-101 

dataset. We compared data augmentations and combined with the 

cropping image before passing to train the model. Also, the 

accuracy increased by approximately 5%. Finally, our proposed 

MobileNet architecture when combined with the data 

augmentation techniques outperforms the other methods. 

Paper outline: The paper is organized as follows: In Section 2, 

the MobileNet and the proposed MobileNet architectures are 

explained. In Section 3, the data augmentation techniques are 

presented. Experimental results are reported in Section 4. The last 

section is the conclusion and future work. 

2. MOBILENET ARCHITECTURE 
We used MobileNet architecture presented by Howard et al. [6] 

that is designed and based on depthwise separable convolutions to 

build a lightweight deep CNN that makes a model too small and 

reduces the computation time. The diagram in Figure 1a) 

illustrates the MobileNet architecture. Consequently, MobileNet 

can be implemented for several recognition problems such as 

object detection, face attributes, fine-grain classification, and 

landmark recognition. 

2.1 Proposed MobileNet Architecture 
Our proposed MobileNet architecture was as follows. First, we 

used the pre-trained model of MobileNet architecture. We decided 

to remove three layers, including the average pooling, fully 

connected, and softmax layers from the original network. Second, 

three extra layers; the global average pooling (GAP) layers, the 

batch normalization (BN), and softmax layers are attached. The 

main objective of our proposed MobileNet architecture is helping 

the network to train faster and achieving higher accuracy. Then, 

the dropout method is proposed to prevent overfitting. Also, the 

batch normalization layer helps the network to train faster. The 

activation function called the rectified linear unit (ReLU) is 

computed between the batch normalization layer and the dropout 

layer. After we applied the GAP layers instead of the average 

pooling, it shows that the parameters in the model are decreased, 

and impact directly on the size of the model. Finally, for training 

the proposed network, we used the fine-tuned MobileNet to train 

the network on the ETH Food-101 dataset. The proposed 

MobileNet architecture as shown in Figure 2b). 
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2.2 Depthwise Separable Convolutions Layer 
The MobileNet architecture is computed based on depthwise 

separable convolutions (DS). The concept of decomposition of 

convolution called factorization is considered to factorize a 

standard convolution into a depthwise convolution.  

  

Figure 2. The architectures of the MobileNet. (A) the original 

MobileNet and, (B) the proposed MobileNet architectures. 

 

Figure 3. Illustration of the MobileNet architecture. (A) 

The overall MobileNet architecture  and (B) an in-depth 

explanation of the DS layer.  

After that, all depthwise convolution layers are computed with 

1x1 convolution called a pointwise convolution, and then 

combined as the outputs to the next layer. The diagram in Figure 

3a) shows the detail of the MobileNet that includes convolutional, 

depthwise separable convolutions (DS), average pooling, fully 

connected (FC), and softmax layers. 

Figure 3b) shows an in-depth explanation of the DS layer 

consisting of depthwise convolution, batch normalization (BN), 

and rectified linear unit (ReLU), respectively. 

3. DATA AUGMENTATION TECHNIQUES 
Data augmentation is a technique to generate new training image 

data that relate to the same image. Many data augmentation 

techniques such as rotation, horizontal, vertical, flip, width shift, 

height shift techniques are applied to the image recognition 

problems and the accuracy performance is improved [22]. 

Samples of image augmentation are shown in figure 4. In this 

paper, the data augmentation techniques applied to our 

experiments consists of rescaling, rotation, width shift, height shift, 

horizontal flip, shear, and zoom.  

 

Figure 4. Example of the data augmentation images: (A) 

original, (B) rotation, (C) width shift, (D) height shift, and (E) 

horizontal flip images. 

 

Figure 5. Illustration of the random cropping method. (A) 

Original food image, (B) random points (x,y)  and crop sizes of 

the cropped image (w, h), and (C) the random cropping image 

used in training process. 

Additionally, the image randomly changes to generate a new 

image in each training epoch, according to the range of the 

parameters. 

Furthermore, random cropping is applied [20]. In this method, the 

position of points (x,y) are random, then it automatically crops 

and resizes to the target size, as shown in Figure 5. In this 

experiment, the size of the image is 224x224 pixel dimension. 

4. EXPERIMENTAL SETUP AND 

RESULTS 

4.1 ETH Food-101 Dataset 
In this paper, we evaluate the deep CNN architectures on the 

benchmark food image dataset. The real-world food images were 

collected by downloading from foodspotting.com website. The 

food images are a mix of eastern and western meals such as apple 

pie, Hamburger, Sashimi, Ramen, Peking duck. The challenging 

dataset consists of 101,000 food images from 101 food categories, 
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called the ETH food-101 dataset  [2]. Examples of the food 

images are shown in Figure 6. 

 

Figure 6. Sample real-world food images from the ETH Food-

101 dataset. 

4.2 Experimental Setup 
Due to the large number of images in the dataset, we divided it 

into four subsets (Set I, Set II, Set III, and Set IV) sizes of 10,100 

(randomly selected 100 images from each category), 20,200, 

30,300, and 40,400 images to perform all of the experiments. 

Images in each subset were divided into training, validation, and 

testing sets of 70%, 10%, and 20%, respectively. For the training 

of the deep CNN architectures, we used the transfer learning with 

the following parameter settings: stochastic gradient descent 

(SGD) solver, batch size of 16, learning rate at 0.0001. We note 

that entire experiments were carried out using the TensorFlow 

platform running on Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz, 

8GB RAM. 

In the experiments, firstly, we used the original food images from 

the ETH Food-101 dataset to experimented with the MobileNet 

architectures in order to find the appropriate training epoch. 

Secondly, the first data augmentation called random cropping was 

employed. The program randomly cropped from a part of a food 

image and resize to the target size, which was 224x224 pixel 

dimension. Thirdly, the data augmentation techniques consisted of 

rescaling, rotation, width shift, height shift, horizontal flip, shear, 

and zoom applied according to the random parameters. Suddenly, 

the food images randomly change in each training epoch. Finally, 

the random cropping image and the data augmentation techniques 

are combined.  

4.3 Experimental Results 
We used 5-fold cross-validation in the training and testing phases. 

The accuracy and standard deviation are used to evaluate the 

performance of the deep CNN architectures on ETH food-101 

dataset.  

From the first experiment, it is essential to indicate that a huge 

number of food images can increase recognition performance.  

We set up the number of training to 50 epochs, which is similar to   

previous reports [1,17,23]. The accuracy of Set I with 10,100 

images and Set IV with 40,400 images were significantly different. 

The accuracy results improved from around 42% to 57% when 

testted on the original MobileNet architecture. Moreover, the 

results improve from 46% to 67% when performed on the 

proposed MobileNet architecture, when accuracy increased by 

more than 10%, as shown in Figure 7. This clearly indicates that 

recognition performance is increased when using more food 

images. 

We show the obtained results of second to fourth experiments 

using the proposed MobileNet architecture on four subsets of the 

ETH Food-101 dataset in Table 1. The table shows that the 

combination of the data augmentation and random cropping was 

the best approach in our experiments. This approach outperformed 

other methods with an increase of around 3-5% accuracy. 

 

Figure 7. The performance of the MobileNet and proposed 

MobileNet architectures versus the different number of 

training samples (Set I - Set IV) on the ETH food-101 dataset. 

Table 1. The performance results of food image recognition on 

four subsets on ETH Food-101 dataset using the approach 

MobileNet architecture 

Methods Subsets of the EHT Food-101 dataset 

I II III IV 

Without data 
augmentation 

45.84 51.29 60.26 66.78 

Random cropping 45.79 55.82 59.52 67.44 

With data augmentation 48.71 56.71 62.49 69.86 

With data augmentation + 
random cropping 

51.39 59.68 65.97 72.59 

 

Table 2. Performances of the five different techniques on ETH 

Food-101 dataset 

Method The number of 

image per class 
Accuracy 

(%) 

Random Forest Discriminative 

Components [2] 
1,000 50.76 

Supervised Extreme Learning 
Committee [10] 

1,000 55.89 

Data Augmentation + MobileNet 400 57.90 

Data Augmentation + Inception V3 

[21] 
1,000 70.41 

FoodNet: Ensemble Net [17] 1,000 72.10 

DeepFood [9] 1,000 77.00 

Our proposed (Data Augmentation 

+ MobileNet) 

400 72.59 

 

From the results in Table 2, the DeepFood architecture obtains the 

best performances on the ETH Food-101 dataset with an accuracy 

rate of 77%. Due to the computer used in the experiments, we 

decided to use the food image only 400 images per class to 

examine our proposed architecture. However, our proposed 

MobileNet architecture reached an accuracy of 72.59%. It is only 

4.41% less than DeepFood architecture. As a result, our proposed 

MobileNet architecture outperforms the Random Forest 
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Discriminative Components [2], Supervised Extreme Learning 

Committee [10] and three deep CNN architectures; MobileNet, 

Inception V3 [21] and FoodNet [17].  

In addition, the proposed MobileNet created a model size of 

22.4MB, which less than the MobileNet architecture 10MB. 

5. CONCLUSION 
In this paper, we used the state-of-the-art MobileNet architecture 

on the food image dataset. We also described a MobileNet 

architecture, which was designed to address the overfitting 

problem. In this proposed MobileNet architecture, the number of 

parameters is decreased by applying the global average pooling 

(GAP) layers. Moreover, the batch normalization (BN), rectified 

linear unit (ReLU), and dropout layers are combined. Also, the 

last layer is the softmax. In addition, the data augmentation 

techniques are computed before transferring to the training 

process.  

From the experimental results, to the best of our knowledge, we 

trained the MobileNet architecture according to the fine-tuned 

model. The proposed MobileNet architecture is competitive when 

compared to the original MobileNet architecture on the ETH food-

101 dataset. We also demonstrated the impact of the data 

augmentation techniques; rotation, shift, flip, shear, zoom, and 

crop when implemented before assigning to the proposed 

MobileNet architecture to process. The best performance achieved 

when the combination of the various data augmentation 

techniques and the proposed MobileNet architecture. 

In future work, we plan to construct the deep ensemble 

convolutional neural network (CNN) architectures, which are a 

combination of the state-of-the-art deep CNN architectures. We 

are interested in extracting the feature vector from the 

convolutional layers which may work better than individual deep 

CNN architecture.  
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