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ABSTRACT Many problems can reduce handwritten character recognition performance, such as image
degradation, light conditions, low-resolution images, and even the quality of the capture devices. However,
in this research, we have focused on the noise in the character images that could decrease the accuracy of
handwritten character recognition. Many types of noise penalties influence the recognition performance,
for example, low resolution, Gaussian noise, low contrast, and blur. First, this research proposes a method
that learns from the noisy handwritten character images and synthesizes clean character images using
the robust deblur generative adversarial network (DeblurGAN). Second, we combine the DeblurGAN
architecture with a convolutional neural network (CNN), called DeblurGAN-CNN. Subsequently, two
state-of-the-art CNN architectures are combined with DeblurGAN, namely DeblurGAN-DenseNet121 and
DeblurGAN-MobileNetV2, to address many noise problems and enhance the recognition performance of
the handwritten character images. Finally, the DeblurGAN-CNN could transform the noisy characters to the
new clean characters and recognize clean characters simultaneously. We have evaluated and compared the
experimental results of the proposed DeblurGAN-CNN architectures with the existing methods on four
handwritten character datasets: n-THI-C68, n-MNIST, THI-C68, and THCC-67. For the n-THI-C68 dataset,
the DeblurGAN-CNN achieved above 98% and outperformed the other existing methods. For the n-MNIST,
the proposed DeblurGAN-CNN achieved an accuracy of 97.59% when the AWGN+Contrast noise method
was applied to the handwritten digits. We have evaluated the DeblurGAN-CNN on the THCC-67 dataset. The
result showed that the proposed DeblurGAN-CNN achieved an accuracy of 80.68%, which is significantly
higher than the existing method, approximately 10%.

INDEX TERMS Handwritten character recognition, denoising image, generative adversarial network,
DeblurGAN, convolutional neural network.

I. INTRODUCTION

Character recognition is a sub-process of text recognition sys-
tems used to recognize handwritten and printed texts within
document images, such as historical documents, memoranda,
and archival material. Therefore, when the main objective is
to focus on the effects of handwritten character recognition,
the factors that affect are as follows. 1) Writing styles; the
distinctions of writing in each era, the diversity of individual
writing styles, and even writing types of equipment [1], [2].
2) Degradation of historical documents; this maybe due to
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a lack of expert staff and the humidity of a storage loca-
tion. 3) Digital transformation; blurred and noisy document
images were created when using low-quality equipment and
taking the picture with a camera without adequate lighting.
4) Limitations of data; an insufficient and uncovered dataset
of handwritten character images in the training process. These
factors need to be considered when recognizing handwritten
text images.

The factors mentioned above directly affect machine learn-
ing, leading to decreased recognition performance. In the
case of noise when digitizing ancient documents, Su et al. [3]
experimented with noise generation using the differential
evolution method to determine the optimal position for
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digitization. Adding one pixel to the original image (called
a one-pixel attack) logically is the trick that causes the
convolutional neural network (CNN) models to be misrec-
ognized. Their experiments showed that adding one pixel
could harm the CNN model by increasing the recognition
errors. Mei et al. [4] demonstrated that blurred images affect
the recognition rate. Subsequently, the DeepDeblur algo-
rithm was invented to transform blurred into sharp images
before sending the sharp images for recognition. Also, the
sharp images caused the model to increase its recognition
performance.

Recently, CNN has replaced traditional machine learn-
ing [5] and is widely used in handwritten character recogni-
tion. Since the CNN method is an automatic algorithm that
consists of feature extraction techniques and image recog-
nition, it is currently used in character recognition in many
languages, such as Latin, Arabic, Bangla, Korean, Chinese,
and Thai [1], [2], [6], [7], resulting in increased character
recognition efficiency. However, if the training images are
low quality and noisy, they will significantly reduce recog-
nition efficiency [3], [4].

Furthermore, deep learning techniques, including CNN,
auto-encoder, and generative adversarial network (GAN),
have also been proposed to improve image restoration and
denoising. Dong et al. [8] proposed the image restora-
tion technique using the CNN technique. The objec-
tive of their study was to transform the low-resolution
images into high-resolution images. They proposed the
super-resolution CNN method, which is a lightweight deep
learning architecture that quickly restores and reconstructs
quality images. Zhangefal. [9] presented feed-forward
denoising CNNs, which integrate single residual learn-
ing into the CNN architecture for denoising images and
to manipulate blind Gaussian noise without unknown
noise levels. Further, Gondara [10] proposed a convolu-
tional denoising autoencoder to denoise the signal from
the medical images and Souibguieral. [11] proposed
an encoder-decoder architecture based on vision trans-
formers, called DocEnTr, to enhance degraded document
images.

The GAN architecture is widely used in many domains,
especially for image restoration and deblur [12], [13], [14].
The GAN architecture is designed as a generator that is
capable of learning from many images and recreating a new
image. The adversarial loss function in the GAN architecture
is used to create a robust model that aims to create high-
quality images during regeneration. DeblurGAN [14] was
first employed by using the learning process of the WGAN-
GP [15] and used perceptual loss [16], allowing the model
to deblur images in the form of blind motion blur that can
be caused by camera movement during a photograph. Conse-
quently, GAN is designed to solve the problems of document
images, such as cleaning noisy backgrounds, deblurring text
in the documents, and regeneration of damaged characters
into the complete characters [17], [18], [19], [20].
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A. CONTRIBUTION

This research presents the DeblurGAN-CNN architecture
that aims to solve the recognition problems of noisy handwrit-
ten character images. The proposed DeblurGAN-CNN archi-
tecture improved the image quality and resulted in higher
performance of handwritten character recognition on various
handwritten character and noisy character datasets. The con-
tributions of our research are the following.

1) This paper proposes a new standard noisy Thai hand-
written character dataset, called the n-THI-C68 dataset,
to challenge other researchers to reconstruct sharp and
clean handwritten characters. The noisy handwritten
character images were synthesized by adding five noisy
methods: low resolution, low contrast, additive white
Gaussian noise, motion blur, and mixed noise. The
n-THI-C68 dataset includes 68 classes and contains
11,592 character images in the training set and 14,290
character images in the test set.

2) We propose the deblur generative adversarial net-
works (GANs) combined with the convolutional
neural network (CNN) architectures, called the
DeblurGAN-CNN architecture, to reconstruct high-
quality handwritten characters from noisy handwritten
characters and simultaneously enhance the accuracy of
the handwritten character recognition systems. In the
DeblurGAN-CNN  architecture, DeblurGAN is pro-
posed to learn from the noisy images and regenerate
the new sharp and clean handwritten character images.
Hence, the reconstructed handwritten character images
are assigned to the CNN architecture for recognition.

B. PAPER OUTLINE

This paper is organized as follows. SectionII presents
handwritten character recognition, convolutional neural net-
work, and generative adversarial network. The proposed
DeblurGAN-CNN architectures are described in detail
in section III. The handwritten character (THI-C68 and
THCC-67) and noisy handwritten character (n-THI-C68 and
n-MNIST) datasets that were used in the experiments are
described in Section IV. Section V reports the experimental
results. The performance of the proposed method is dis-
cussed in Section VII. Finally, conclusions and future work
are addressed in section VI.

Il. RELATED WORK

A. HANDWRITTEN CHARACTER RECOGNITION

In the last two decades, handwritten character recognition
(HCR) has been well-studied and has become fundamen-
tal to research in image recognition. Many handwritten
datasets have been collected from real-world data that aim
to improve the quality of the characters and enhance the
recognition performance. The most well-known dataset is the
MNIST dataset [21], which collected many digits written
on envelopes and has 70,000 handwritten digits in total.
To recognize the digit images from the MNIST dataset,
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LeCun et al. [21] proposed the first convolutional neural net-
work that included five convolutional layers, called LeNet-35,
to address problems of the MNIST dataset. Their method
achieved an accuracy of 99.20%. Belongie et al. [22] pro-
posed shape context to discover the correspondence points
on the digit images and then match two shapes using the
bipartite graph method. Hence, the minimum cost between
the shape of the query image and training images was the best
matching. As a result, an accuracy of 99.37% was achieved
from their method. Surinta et al. [23] proposed the histograms
of oriented gradients (HOG) and bag of visual words (BOW),
called HOG-BOW, to first extract the local features from the
sub-images. Second, local features were sent to the K-means
clustering algorithm to construct the codebook and used as
the BOW features. Finally, the L2-regularized support vec-
tor machine (L2-SVM) was proposed as the classifier. The
HOG-BOW combined with L2-SVM achieved an accuracy
of 99.43%. Maas et al. [24] proposed dual codebooks that
were constructed from the features extracted using pixel
intensity and HOG method, called dual-BOW. The dual-
BOW method achieved an accuracy of 99.17%. Furthermore,
Abdulhussain ef al. [25] used orthogonal polynomials and
moments to extract the gradient and smooth from the digit
images. These features were sent to the SVM to classify the
digit images of three datasets: Roman, Arabic, and Devana-
gari, achieving an accuracy of 100%, 99.32%, and 99.28%,
respectively.

For the Thai character dataset, Surintaefal. [1] col-
lected isolated Thai handwritten characters that contained
68 classes and consisted of consonants, vowels, tones, and
special symbols. They also proposed two local descriptors:
scale-invariant feature transform descriptor (siftD) and HOG,
to extract the robust features from the Thai character images.
The robust features were sent to classify using SVM and
K-nearest neighbor (KNN) methods. The Thai handwritten
character dataset was divided into training and test sets for
evaluation. The best method was the siftD method which
combined SVM with the radial basis function (RBF) ker-
nel. The siftD+SVM method achieved 98.93% with 10-fold
cross-validation and 94.34% on the test set. Furthermore,
Inkeaw et al. [26] proposed the gradient features of discrim-
inative regions (HOGfoDRs) and SVM to recognize Thai
characters. The HOGfoDRs+-SVM method achieved 98.76%
with 5-fold cross-validation. For the updated Thai handwrit-
ten dataset, Onuean et al. [27] collected Thai handwritten
characters, called Burapha-TH, that consisted of 10 digits,
68 characters, and 320 syllable classes. They also created a
CNN model using a VGG architecture with a batch normal-
ization layer containing 13 layers, called VGG-13, evaluated
on the Burapha-TH dataset, and which achieved 92.29%,
95.00%, and 96.16% accuracy on the digit, character, and
syllable classes, respectively.

In this section, we focused on various approaches which
used the traditional methods, including feature extrac-
tion methods and machine learning techniques for hand-
written character recognition. For the feature extraction

VOLUME 10, 2022

method, many state-of-the-art methods were investigated,
such as siftD, HOG, HOG-BOW, dual-BOW, HOGfoDRs,
orthogonal polynomials, moments, and shape context. Some
state-of-the-art methods, including siftD and HOG, focus on
extracting the feature from the invariant key points when
the image is resized and rotated. Other methods, such as
HOG-BOW and dual-BOW, cluster the robust feature that is
extracted by the feature extraction methods into a codebook
using clustering algorithms. Then, encoding the codebook
from the input images and using them as robust features.
For the machine learning techniques, two techniques: SVM
and KNN, are proposed to create a robust model using the
robust features. We have seen that simple machine learn-
ing techniques, such as the KNN algorithm, could obtain a
high recognition rate when the robust features are extracted.
However, complex computation processes are required when
extracting the robust features.

B. GENERATIVE ADVERSARIAL NETWORK

The generative adversarial network (GAN) was first pre-
sented by Goodfellow et al. [12]. GAN is an unsupervised
learning model that automatically learns from the regularities
of input images and is then capable of creating a new image
that is similar to the original image. Therefore, GAN has
been applied in a wide range of applications, such as natural
transfer style, image super-resolution, face generation, image
restoration, and even image deblurring [14], [28], [29], [30].

Since GANs have generative ability and style transforma-
tion, they were applied in the data augmentation technique
[7], [29] to improve recognition performance for document
images. Fogel er al. [31] proposed ScrabbleGAN, which is
semi-supervised learning by using unlabeled and labeled
samples during the training process, to synthesize differ-
ent Latin and French handwritten text styles. In addition,
Eltay et al. [7] proposed adaptive data augmentation based
on the ScrabbleGAN architecture to recognize Arabic hand-
written text. The adaptive method generated more balanced
characters in training samples.

Moreover, many issues in documents, such as blurred
image, noisy background, salt-and-pepper, and faded text,
lead to the document being unreadable to humans, signif-
icantly decreasing the recognition performance of the text
algorithms [17], [18], [19], [20]. To solve these problems,
Bhunia ef al. [18] proposed two networks, including tex-
ture augmentation and binarization networks, to binarize the
degraded document images. First, the texture augmentation
network was designed to create multiple textual contents with
diverse noisy textures to increase the size of the document
binarization dataset. Second, the binarization network gen-
erated new images, which are the clean binary document
images. Sharma et al. [17] used CycleGAN to remove the
noise from the documents resulting in cleaned documents.
The CycleGAN model was employed to map noise to clean
documents and clean to noisy documents using the cycle
consistency loss function. Their experiment showed that the
CycleGAN provided acceptable results. In terms of document
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enhancement, Souibgui and Kessentini [20] applied condi-
tional GAN, which is a single GAN network, to restore
various problems of mixed document degradations, including
tasks of document clean up, binarization, deblurring, and
watermark removal.

Furthermore, Wu et al. [32] applied Wasserstein loss to the
CycleGAN that improved the CycleGAN algorithm to deblur
text images into clear text images. Also, Zhao et al. [33] used
the GAN model to optimize the distortion of input images
before feeding the rectified images to the text recognizer.

Since the first GAN architecture was presented in
2014 [12] to regenerate a new image similar to the original
image, many GAN architectures have been proposed to solve
the problems, for example, noisy images, degraded docu-
ments, and blur text, in the domain of document images.
We then have the concept of using the GAN architecture to
denoise the handwritten character images before recognizing
them using the CNN architecture.

C. CONVOLUTIONAL NEURAL NETWORK

The convolutional neural network (CNN) architecture
method was first proposed in 1998 by LeCun et al. [21] to
recognize handwritten digit images. In 2012, CNN began
to gain attention and significant influence on image recog-
nition research when Krizhevsky et al. [34] proposed a
new CNN architecture that contains eight weighted layers,
five convolutional layers and three fully-connected layers,
to train on one million images from the ImageNet dataset
with 1,000 classes [35] and win the LSVRC competition.
In 2014, Simonyan and Zisserman [36] presented very deep
CNN architecture to the depth of 16-19 weight layers,
called VGGNets. These CNN architectures are called plain
networks.

Consequently, we have seen that the design of the CNN
architectures has very deep architecture, such as GoogLeNet
which had 22 layers and ResNet which had more than
100 layers. However, when designed with deep weight layers,
the weight parameters also decrease and require high com-
putation. However, the new architectures were also proposed
with new convolution techniques. For example, GoogLeNet
proposed an inception architecture [36] which calculated with
the small filter size of 1 x 1,3 x 3, and 5 x 5. The dimension
reduction technique was employed in the inception modules
to reduce the weight parameters and then, the inception
module was stacked on top of each module. A Residual
connection [37] and InceptionResNet [38] architectures were
proposed according to the time-consuming in the plain net-
work like VGGNets. The residual connections were added
to the plain network, which can be operated when input and
output are the exact sizes. ResNets also has only one fully-
connected layer with 1,000 nodes, While the VGGNets have
three fully-connected layers with 4,096, 4,096, and 1,000
nodes, respectively.

Furthermore, the concept of connecting the current layer
to other layers in a feed-forward direction was proposed
and called DenseNet [39]. In the DenseNet architecture, the
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weight layers were then reused entirely in the network to
make the model more compact. The DenseNet architecture
could define the network with more than 200 weight lay-
ers. For MobileNetV1 [40], the lightweight architecture was
proposed by using depthwise separable convolution, which
is the operation of depthwise and pointwise convolutions
proposed to reduce the dimension of the feature map. Sub-
sequently, the inverted residual modules were proposed in
MobileNetV2 [41]. The concept of the automatic discovery
of the CNN architecture using reinforcement learning and
recurrent neural networks (RNN) was invented and was called
neural architecture search (NASNet) [42], which is a scal-
able architecture. Many convolution operations were selected
using the controller RNN and recursively constructed convo-
lutional cell blocks.

For the use of CNN in digit handwritten character recog-
nition, Ciresan et al. [43] proposed multi-column deep neu-
ral networks (MCDNNSs) in which the input image was
first trained by different DNN blocks. Hence, the outputs
of each DNN block were classified by averaging indi-
vidual predictions. The MCDNN yields high performance
with 99.77% accuracy on the MNIST dataset. Furthermore,
Savita et al. [44] discovered the best hyperparameters of the
CNN architecture, including the number of layers, kernel
size, padding, stride, and receptive field. They also trained
the CNN architecture with various optimization algorithms
(SGDM, Adam, Adagrad, and Adadelta). The results showed
that the CNN architecture with the Adam optimizer achieved
an accuracy of 99.89% on the MNIST dataset.

Tang et al. [45] proposed two CNN architectures that
included 6 layers (4 convolutional layers and 2 fully-
connected layers) and 8 layers (5 convolutional layers and
3 fully-connected layers). The first CNN architecture was
trained on printed Chinese characters. Hence, the pre-trained
model of the first CNN architecture was used as a transfer
learning to the second CNN architecture. The second CNN
model was trained on historical Chinese characters. The
accuracy was increased from 79.2% to 88.56% when using
the transfer learning technique. Alom et al. [2] used vari-
ous state-of-the-art CNN architectures: VGGNet, Network
in Network, ResNet, and DenseNet, to recognize handwrit-
ten Bangla characters. The result showed that the DenseNet
achieved the best accuracy with 98.31%. Gonwirat and Sur-
inta [6] used the pre-trained model of the VGGNet instead
of training from scratch. The result showed that the transfer
learning of the VGGNet achieved 99.20% on the Thai hand-
written character dataset.

Although the CNN architectures achieved high efficiency
on image classification problems, Su et al. [3] demonstrated
an image generation technique that only added one pixel
into the target image based on the differential evolution
technique. With only one attack pixel, the accuracy per-
formance significantly decreased. For handwritten charac-
ter recognition, many noisy methods were applied to the
character images, such as motion blur, low contrast, and
additive Gaussian white noise (AGWN) [46], to demonstrate
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FIGURE 1. lllustration of the DeblurGAN-CNN architecture.

that the noise images could significantly reduce the recog-
nition performance. Consequently, to increase the recog-
nition efficiency, a synthesized image technique was
introduced to remove noise before sending images to
recognition.

CNN architectures have been proposed for image clas-
sification purposes. The CNN architectures combine two
main tasks (feature extraction and machine learning) into one
architecture to specifically reduce the complex feature extrac-
tion processes. Many state-of-the-art CNN architectures have
been proposed and have become successful in many domains.
For example, AlexNet, Googl.eNet, VGGNets, MobileNets,
ResNet, DenseNet, NASNet, and EfficientNet. However,
the latest CNN architectures operate with more deep lay-
ers, convolution operations (i.e., 1D, 2D, 3D convolution
[47], [48], and depthwise separable convolution), and extra
layers (i.e., global average pooling, inception module, reduc-
tion cell) [42] to compute the robust spatial features from
the image. Therefore, the researcher could propose new CNN
architecture, invent new operations, and combine them with
the existing CNN architectures.

From related work above, we found that the GAN archi-
tecture could be used to solve the problems of noisy images,
while various CNN architectures could propose to recog-
nize the noisy handwritten character images. The proposed
denoising and recognition framework is described in-depth
in the following section.

lIl. THE PROPOSED DENOISING AND RECOGNITION
FRAMEWORK

The performance of the handwritten character recognition
is always affected by noise. Consequently, we proposed the
DeblurGAN-CNN architecture to address the noise prob-
lems. Although, many robust CNN architectures achieved
high accuracy in every domain, even on handwritten charac-
ter images. However, the accuracy decreases when affected
by many types of noise, such as blur, low resolution, and
low contrast. In this research, we first studied the effect
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of the noisy character images that harm the performance
of handwritten character recognition. Second, data aug-
mentation techniques were applied while training the CNN
model to increase new patterns of the handwritten charac-
ter images. The data augmentation methods could gener-
alize the CNN model when the noise was not adequately
high. Hence, the performance decreased after adding a
high noise level. Third, we discovered that the Deblur-
GAN could transform the noise into new clean handwritten
characters. Finally, DeblurGAN architecture and the robust
CNN architecture were combined to enhance the recogni-
tion performance of the handwritten character images, called
DeblurGAN-CNN.

There are several methods for improving image quality, for
example, super-resolution, image restoration, and deblurring
images. However, some noise appears in the handwritten
character images while transforming the document papers
into digital format. Consequently, we considered two GAN
architectures (DeblurGAN and CycleGAN) to address our
problems because these two GAN architectures are designed
for deblurring images. However, the CycleGAN is mainly
used for a style transfer that transforms from one style to
another style. In comparison, many forms of noise occur in
handwritten character images, which means CycleGAN is
not appropriate for these problems. Furthermore, we used the
DeblurGAN architecture that could deal with many-to-one
style transfer.

In this paper, we proposed the DeblurGAN-CNN
framework that combines two state-of-the-art deep learning
architectures to denoise and recognizes the noisy handwritten
characters into one architecture. The proposed framework
contains a generator of generative adversarial network (GAN)
and convolutional neural network (CNN) architectures,
as shown in Figure 1.

In the following subsections, the details of the DeblurGAN-
CNN framework are described. 1) DeblurGAN is employed
as a denoising network. 2) DenseNetl21 is the convolu-
tional neural network architecture performed as a recognition
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FIGURE 2. lllustration of the DeblurGAN generator architecture.

network. 3) We describe the DeblurGAN-CNN architecture
and training strategy that is used for training the proposed
framework.

A. DEBLURGAN

Kupyn et al. [14] proposed the GAN architecture to automat-
ically deblur blurred images from any unknown blur function,
called DeblurGAN, which can synthesize sharp images (Is)
from blurred images (/5). The DeblurGAN uses the generator
(Gg,;) and the discriminator (Dg,, ) to distinguish between real
and generated images.

The generator architecture of the DeblurGAN is shown in
Figure 2. The beginning part of the network consists of three
convolutional blocks that are designed to downsample the
feature maps. The middle of the network is a sequence of nine
residual blocks. In the last part of the network, the transposed
convolution blocks are constructed to upsample feature maps
to the original size as an input image. Moreover, the global
skip connection is also proposed for this architecture by
adding input to the output image. The global skip connection
makes the network converge faster and yields better output
results.

In the DeblurGAN, the PatchGAN architecture [13] is
used as the discriminator. The PatchGAN architecture has
downscale convolutional layers followed by instance nor-
malization and leaky rectified linear unit (LeakyReLU) with
a=0.2.

Consequently, as shown in Equation (1), the loss func-
tion is presented in the DeblurGAN that includes adversarial
(Lgan) and content loss (Ly) that is weighted by A, where
A is a parameter that controls the relative of two objectives:
adversarial and content loss. The WGAN-GP [15], which
is the critic function to determine the completeness of the
generator result, is used as the adversarial loss, as shown in
Equation (2). Also, the content loss is the perceptual loss [16]
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to compare the style-transfer, called reconstructed image,
with the original image using the L2 loss function.
L= Len + Mx (1

N’ N "
adversarial loss  content loss

total loss
v = Zﬁzv:] —Doy <G96 (1 B)) 2

B. DENSENET

In the early architecture, a residual connection using element-
wise input (x) with an output building block (F (x)) [37] was
proposed, called ResNet. The benefit of the ResNet architec-
ture was that the network could construct with deep convolu-
tional layers and still obtain better results in terms of speed
and performance. However, the DenseNet architecture [39]
was designed to include the maximum information flow by
concatenating all feature maps (x}) from the previous convo-
lutional layers, called a dense block. DenseNet was proposed
to deal with the reuse of the features, reduce the architecture
parameters, and eliminate gradient problems. The equation of
the DenseNet is shown in Equation (3).

X =HP ([xg,x,},xz, ... ,xl;;—l]) 3)

where H?(-) is the composite function of a layer (p), includ-
ing batch normalization (BN), rectified linear unit (ReLU),
and convolutional (Conv) layer. The function parameter
[xo xb x2 ...,xp_l]

o X X is a concatenation of previous layers
from the first layer (xf,)) to last layer (xr _1).

An overview of the DenseNet is shown in Figure 3(a).
The DenseNet architecture consists of three main parts.:
1) A convolutional layer with a kernel size of 7 x 7. The
convolutional block includes BN, ReLU, and Conv layers,

with a stride of 2 and followed by a 3 x 3 max pooling layer
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FIGURE 3. lllustration of the DenseNet121 architecture, including (a) core
block, (b) dense block, (c) bottleneck layer, and (d) transition layer.

Transition Layer

with a stride of 2. 2) Four dense blocks and transition layers.
3) The global average pooling (GAP) and classification layers
with a softmax function.

Details of the DenseNet architecture, are as shown in
Figure 3(b). The dense block is concatenated with the output
of bottleneck layers, which is expanded N times, proposed to
decrease the parameters of the architecture. Each bottleneck
layer consists of 1 x 1 Conv and 3 x 3 Conv layers, as shown in
Figure 3(c). The transition layer (see Figure 3(d)) is proposed
to reduce the feature map width and height by 2 x 2 average
pooling with a stride of 2 and 6 parameter applies to compress
the network where a range of a parameteris 0 < 6 < 1.

In this paper, we proposed to use DenseNetl21 since it
is the smallest size appropriate for handwritten character
recognition.

C. DEBLURGAN-CNN SETTING AND TRAINING SCHEME

In this section, we provide the construction and training
strategy of the proposed framework, as shown in Algorithm 1.
Also, the details of the setting and training strategy of the
DeblurGAN-CNN framework are described in the following.

1) DEBLURGAN TRANING

DeblurGAN was designed for deblurring images. However,
in our problems, DeblurGAN was applied to reconstruct the
sharp handwritten character images from the various noisy
styles, such as low contrast, motion blur, and white Gaussian
noise. To train the DeblurGAN architecture, the dataset then
includes the pairs of noisy and sharp handwritten character
images, (xi" oy, xis harp ), wherei =1, 2, ..., n. In the Deblur-
GAN training process, the generator network receives a noisy
image ()cl{w'sy ) as input and adjusts the weights to reconstruct

the output as a sharp image (xis harp ). We evaluate the quality
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Algorithm 1 Construction and training of the DeblurGAN-
CNN framework

Input: Training set including pair of sharp and noisy character
images (xfharp, xim}”y) and label y;, wherei = 1,2, ...,n,
training epochs of DeblurGAN: M,
training epochs of CNN: P.

Define: (XP, YD) is training set of data augmentation

. h noisy
technique {(x}"“"”, y)}U{(x; . yi)}.

Step 1) Create DeblurGAN network including generator
network G(x) and discriminator D(x).

Step 2) Train DeblurGAN using.M epochs with dataset

of pair set {(xfharp , xinmsy )} and save the best

model based on the loss function in Equation (1).

Step 3) Create CNN of pretrained weight from the Ima-
geNet dataset.

Step 4) Train CNN using P epochs with the dataset
(XD, YP) and save the best model based on the
loss function in Equation (4).

Step 5) Construct a DeblurGAN-CNN network as the
following:

- Load the G (x) network in the step 2).

- Load the CNN network in the step 4).

- Combine G (x) and CNN with the intermediate
layer.

Step 6) Fine tune the DeblurGAN-CNN network train-
ing using P epochs with the dataset(X?, Y?) and
the loss function in Equation (4). The training
steps consist of two steps as the following:
-Freeze the part of G (x) in the network and train
using P/2 epochs.

-Unfreeze and train all layers in the network
using P/2 epochs.
Output: The DeblurGAN-CNN network

of the reconstructed handwritten character images using the
discriminator and the loss function as shown in Equation (1).

2) CNN TRANING

We employed the CNN architectures to train on a handwritten
character dataset that consisted of the pairs (x;, y;), where
i = 1,2,...,n, x; is handwritten character of character
i and y; is label of character i. To improve the efficiency
performance, we proposed the transfer learning method [6]
with convolutional kernels of prior knowledge for faster
convergence in a few epochs. The pre-trained CNN model
was modified in the classification layer and then fine-tuned
in the network. Furthermore, we trained the CNN models
with the data augmentation techniques with noisy handwrit-
ten character images (xl.n Yy which is synthesized from the
original sharp images (x; harpy  where X/ OY = oy (i harp
and f"°*Y(x) is the generator function of a synthesized
noisy image. We trained the CNN model to classify images
using categorical cross-entropy loss function as shown in
Equation (4).

1 W
L=—% Y. log (peny (i3 0) @)

where N is the number of training images and pcyy (xi; 6)
is the probability distribution of CNN output, where x; is an
input image and 6 is weight parameters.
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3) DEBLURGAN-CNN CONSTRUCTION

The DeblurGAN-CNN network connects the DeblurGAN
generator and CNN, as shown in Figure 1. This proposed
network benefits from the generator producing a sharp output
image from various noisy images before recognizing it by the
CNN model. The output of the generator (G(x)) is called the
intermediate output (%;), where x; = G(x;) is computed using
the tanh function. Hence, the output image values are in the
range of -1 and 1. Subsequently, we add the intermediate layer
to convert the value to the range of 0 and 1, the same as the
input of the CNN which the adjusting function is f (x) =
(x 4+ 1)/2 where x is intermediate output.

4) DEBLURGAN-CNN FINE-TUNING

The DeblurGAN-CNN network is still an incomplete merge
network since a part of CNN has inexperienced generator
output. Thus, fine-tuning the DeblurGAN-CNN network is
an approach to improvement. In the first step, we only trained
the CNN by freezing the DeblurGAN generator for stable
network training and retraining the output as sharp images.
In the second step, we trained the DeblurGAN-CNN network
with unfrozen whole layers. The proposed DeblurGAN-CNN
network was trained with a few training epochs. We trained
only ten epochs in each frozen step and each unfrozen step.

IV. HANDWRITTEN CHARACTER DATASETS

In this section, we briefly describe the handwritten character
datasets used in the experiments, including two Thai hand-
written character datasets: THCC-67 [49] and THI-C68 [1],
and two noisy handwritten character datasets: n-MNIST [46]
and n-THI-C68. An overview of the handwritten character
datasets is shown in Table 1.

A. THE NECTEC THAI HANDWRITTEN CHARACTER
CORPUS (THCC-67)

The National Electronic and Computer Technology Cen-
ter (NECTEC) presented a Thai handwritten character cor-
pus (THCC) of consonants, vowels, and tones that contains
67 classes, called THCC-67. The THCC-67 dataset has 9,012
characters that were rescaled to 32 x 32 pixels. In this
research, we used it as an independent test. The THCC-67
dataset is shown in Figure 4(a).

TABLE 1. Overview of the handwritten character datasets.

Datasets Types and Number Training Test
Languages of Sets Sets
Classes
THCC-67 [49] Char, Thai 67 - 9,012
THI-68 [1] Char, Thai 68 11,592 2,898
n-THI-68 Char, Thai 68 11,592 14,290
n-NMINST [46] Digit, Arabic 10 180,000 30,000

B. THE ALICE OFFLINE THAI HANDWRITTEN CHARACTER
DATASET (THI-68)

The THI-C68 dataset containing 28 classes was proposed by
Surinta et al. [1]. The THI-C68 dataset was collected from
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150 university students aged 20-23 years old. Students wrote
the Thai characters on a form with a white background that
was scanned with a resolution of 200 dpi. Image transforma-
tion was used to rescale the aspect ratio to avoid distortion
and images were stored in grayscale format. The THI-C68
dataset has 14,490 character images containing consonants,
vowels, and tones. An example of the THI-C68 is shown in
Figure 4(b).

AYTARPINIAT
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) ud

V&%) T ¢
3o
TErRYLAI
.90 £
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Sk @l
D)2 I
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FIGURE 4. Examples of Thai handwritten character datasets: (a) THCC-67
and (b) THI-C68.

C. NOISY THI-C68 (N-THI-68)
In this research, we propose a new noisy Thai handwrit-
ten character dataset, called noisy THI-C68 (n-THI-C68).
We synthesized new noisy character images using five differ-
ent noisy techniques: low resolution, additive white Gaussian
noise (AWGN), low contrast, motion blur, and mixed noise.
We randomly selected one noisy technique to synthesize
each character image according to the THI-C68 dataset with
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FIGURE 5. Examples of noisy handwritten character datasets:

(a) n-THI-C68 that applied 1) low resolution, 2) AWGN, 3) low contrast,
4) motion blur, and 5) mixed noise and (b) n-MNIST that applied

1) AWGN, 2) Motion blur, and 3) low contrast and AWGN.

11,592 training images and 2,898 test images. We obtained
11,592 noisy character images for the training set that were
randomly applied with noisy techniques with various adjust-
ment values. For the test set, we increased the size from
2,898 character images up to 14,290 noisy character images
by randomly applying five noisy techniques to the original
character images.

As shown in Figure 5(a), noisy Thai handwritten character
images were synthesized as follows. 1) Low resolution with a
low level at 8-12 pixels. 2) AWGN with increasing noise with
a peak signal to noise ratio (PSNR) of 9.5. 3) Low contrast
with reduced color gradient in range of 0.15-0.5 based on the
original images. 4) Motion blur with two blur methods: direc-
tional motion blur [46], [50] and random motion blur [51].
5) Mixed noise between four noisy methods.

D. NOISY MNIST (N-MNIST)

Basu et al. [50] proposed the noisy MNIST (n-MNIST),
which is the extended version of the MNIST dataset [21]
that applied three noisy methods: AWGN, motion blur, and
combinations between reduced contrast and AWGN. The n-
MNIST dataset contains 10 classes (0-9) and has 180,000
training samples and 30,000 test samples due to applying
three noisy techniques to the original images.

Figure 5(b) shows noisy digits were applied as follows.
1) AWGN using increase noise with RSNR of 9.5. 2) Motion
blur using linear motion filter with a size of 5 pixels and
rotation with 15 degrees, and a combination between reduced
contrast and AWGN with a PSNR of 12.

V. EXPERIMENT RESULTS
In this section, we evaluated the performance of the proposed
DeblurGAN-CNN architecture on the handwritten character
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datasets and noisy handwritten character datasets. We then
investigated the effective recognition of CNNs and the quality
of image restoration by the generative adversarial networks
(GAN). In this study, we trained the CNN and GAN models
on Linux operating systems with Nvidia GeForce GTX1080ti
8G GPU, Intel(R) Core i5-7400 Processor 3.00GHz CPU,
32GB DDR4 RAM.

A. EVALUATION OF THE CNN ARCHITECTURES ON
THI-C68 DATASET

1) COMPARISON OF STATE-OF-THE-ART CNNS

We evaluated four CNN architectures: VGG19, Inception-
ResNet, MobileNetV2, and DenseNet121 on the Thai hand-
written character dataset to find the best CNN architecture.
We divided the THI-C68 dataset into a training set and test
set with 80% and 20% ratios, with 13,041 training images
and 1,449 test images. Hence, the training set was evaluated
using 5-fold cross-validation. The test set was an independent
holdout set for final evaluation.

Furthermore, we focused on three training methods:
1) scratch learning (SL), 2) transfer learning (TL), and
transfer learning with noisy data augmentation techniques
(TL-nDA).

TABLE 2. Recognition performances (mean validation accuracy: 5-cv,
standard deviation, and test accuracy) of four CNN models: VGG19,
InceptionResNet, MobileNetV2, and DenseNet121, using different
learning methods (SL, TL, and TL-nDA) on the THI-C68 dataset.

Learning Methods
CNN Models SL TL TL-nDA
5-cv Test 5-cv Test 5-cv Test

VGGI19 96.51£0.76 96.93 99.34+0.23 98.81 92.72+7.39 98.45
InceptionResNet 98.63+0.31 98.15 99.05+0.19 98.61 92.79+7.40 98.38
MobileNetV2  97.10+0.78 97.10 99.13+0.21 98.96 93.97+6.51 98.93
DenseNetl121  98.61+0.32 98.41 99.27+0.11 99.48 95.41+5.06 99.28

TABLE 3. The performance (mean validation accuracy: 5-cv and 10-cv,
standard deviation, and test accuracy) comparison of the CNN models
using different learning methods with other studies on the THI-C68
dataset.

Set-1 Set-1T
Methods

5-cv Test 10-cv Test

SiftD-SVM [1] - - 98.93+0.03 94.34
HOGFoDRs-SVM [26] 98.76 - - -
MobileNetV2-TL 99.13+£0.21 9896 99.16+0.31  99.31
DenseNet-TL 99.27+0.11 99.48 99.30+£0.36 99.03
MobileNetV2-TL-nDA 9397 +6.51 98.93 94.69+7.62  99.10
DenseNet-TL-nDA ~ 95.41+5.06 99.28 9544+6.88  99.17

We proposed four noisy data augmentations: low reso-
lution, AWGN, motion blur, and mixed noise, which were
generated as a training set of the n-THI-C68 dataset.

The hyperparameters in CNN models were defined as
follows: training epochs = 100 epochs, batch size = 32,
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FIGURE 6. lllustration of the noisy images of (a) low resolution, (b) AWGN, (c) low contrast, (d) motion blur, and (e) mixed noise, as shown in
the first row and reconstructed images using DeblurGAN architecture, as shown in the second row. Note that the high PSNR value presents
better performance accuracy, and the high SSIM value presents the most similar character images between the reconstructed and original
images.

TABLE 4. The performance of the CNN architectures and DeblurGAN-CNN architectures on the n-THI-C68 dataset.

CNN Architectures DeblurGAN-CNN Architectures

Noise Methods MobileNetV2-TL DenseNet121-TL  MobileNetV2-TL- DenseNetl121-TL- DeblurGAN- DeblurGAN-

nDA nDA MobileNetV2 DenseNet121
Low Resolution 77.24 49.90 93.02 93.96 98.48 98.52
AWGN 27.92 16.63 96.72 98.21 98.72 99.03
Low Contrast 13.80 31.30 95.62 93.51 99.28 99.41
Motion Blur 45.89 49.59 91.75 93.06 97.96 97.69
Mixed Noise 30.78 25.02 93.93 92.89 97.90 98.00
Overall 39.13 34.49 94.21 94.33 98.47 98.53

stochastic gradient descent (SGD) optimizer, learning
rate = 0.001, decay rate = 0.0001, momentum = 0.9, and
image size = 128 x 128 pixels which is the smallest input
of the InceptionResNet architecture. In transfer learning,
we also used the pre-trained CNN model that learned on the
ImageNet Dataset [35].

The accuracy results of CNN architectures are shown in
Table 2. The accuracy performance of the CNNs was above
97% accuracy. The VGG19 architecture achieved the lowest
performance on the THI-C68 dataset with an accuracy of
96.93% when training from scratch. On the other hand, the
DenseNet121 architecture achieved the best performance in
all learning methods with an accuracy of 99.48% when using
transfer learning.

Furthermore, we demonstrate that noisy data can decrease
the recognition performance of the CNN architectures. This
experiment then applied four noisy data augmentation tech-
niques while training the CNN model using the transfer
learning method. It clearly showed that the accuracy of
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DenseNet121 was slightly decreased from 99.48% to 99.28%
when training with noisy images. Subsequently, we proposed
the DeblurGAN-CNN architecture to address the problems of
noisy images. The result of the DeblurGANS is shown in the
Section B.

2) COMPARISON OF THE CNNS AND OTHER STUDIES
According to previous experiments, we selected two CNN
architectures, DenseNet121 and MobileNetV2. In this study,
two CNN architectures were used and hand-crafted feature
extraction combined with machine learning, namely SiftD-
SVM [1] and HOGFoDRs-SVM [26], were evaluated and
compared on the THI-C68 dataset.

To consider a fair comparison between CNN architectures
and previous studies, we provided two shuffled random sub-
sets of the THI-C68 dataset according to the experiments
of Surinta et al. [1] and Inkeaw et al. [26]. The first subset
(Set-I) had 11,592 training samples and 2,898 test sam-
ples. The second subset (Set-1I) had 13,041 training samples
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and 1,449 test samples. Note that, Set-I and Set-Il were
compared with the HOGFoDRS-SVM and the SiftD-SVM
methods.

The results reported in Table 3 show that the DenseNet121
architecture with transfer learning (DenseNet121-TL) out-
performed every CNN architecture on both sets with 5-fold
cross-validation. Consequently, DenseNet121-TL outper-
formed the HOGFoDRs-SVM method by 0.51% on Set-I
and outperformed the SiftD-SVM method by 0.37%. Also,
MobileNetV2 with transfer learning (MobileNetV2-TL)
achieved the highest performance on the independent
test set of Set-II with 99.31% accuracy. MobileNetV2-
TL significantly outperformed the SiftD-SVM method
by 4.97%.

From the results above, the CNN architectures with
transfer learning impact improving the performance of
handwritten character recognition. Consequently, the CNN
models achieved better accuracy than the hand-crafted fea-
tures [1], [26] on the THI-C68 dataset.

B. DENOISING PERFORMANCE OF DEBLURGAN ON THE
N-THI-C68 DATASEST

In this experiment, the input images were the noisy images of
the n-THI-C68 dataset with 128 x 128 pixels. We first recon-
structed the denoise character images with 128 x 128 pixels
using Wasserstein and content loss functions. The hyper-
parameters of DeblurGAN were applied as follows: the
optimization algorithm is Adam, learning rate = 0.0001,
momentum = 0.9 and 0.999, training epochs = 200, and
batch size = 32.

To study the reconstruction quality of the denoise
images, we evaluated the DeblurGAN architecture with
two well-known image quality metrics called the peak sig-
nal to noise ratio (PSNR) and the structural similarity
index (SSIM) on the n-THI-C68 dataset. The noise images
with different noise methods and reconstructed images are
shown in Figure 6. We reported the PSNR and SSIM val-
ues obtained when evaluating the different noise methods.
High PSNR and SSIM values represent better accuracy and
reconstruction of the image, respectively. We achieved the
best PSNR and SSIM when using DeblurGAN to recon-
struct the character images from noisy images of the low
contrast, low resolution, and AWGN, respectively. However,
motion blur and mixed noise were the most difficult to
reconstruct.

The DeblurGAN architecture adds the residual blocks
and global skip connection in the generator, making the
DeblurGAN only learn a residual correction to transform the
noisy images. The DeblurGAN could be more generalized
in reconstructing the denoise images generated by multiple
generations or from the unknown kernel. Importantly, the
DeblurGAN [14] uses the WGAN-GP and perceptual loss
when reconstructing denoise images, while the traditional
neural networks use L1 and L2 optimization algorithms when
reconstructing denoise images.
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C. DENOISING PERFORMANCE OF DEBLURGAN ON THE
N-THI-C68 DATASEST

This section presents the DeblurGAN-CNN architectures
to perform on the n-THI-C68 dataset. In response to the
experimental results, as shown in Section A, we selected
two CNN architectures, DenseNet121 and MobileNetV2,
as the CNN models. Hence, we connected DeblurGAN
with CNN architecture, called DeblurGAN-DenseNet121
and DeblurGAN-MobileNetV2. Consequently, we compared
the DeblurGAN-CNN architectures with the traditional
CNN architectures to recognize the noisy character images,
as shown in Table 4.

Table 4 shows that the CNN architecture achieved low
accuracy when using MobileNetV2-TL. It attained 77.24%
accuracy when recognizing the noisy images with low reso-
lution. The worst performance of only 13.80% accuracy was
achieved when recognizing low-contrast images. However,
we found that when training the CNN model using transfer
learning with noisy data augmentation techniques (TL-nDA),
the accuracy increased from only 13.80% to 95.62% when
using MobileNetV2-TL-nDA. The overall performance accu-
racy of MobileNetV2-TL-nDA and DenseNetl121-TL-nDA
was 94.21% and 94.33% respectively.

The results show that the DeblurGAN-CNN architectures
could address the problems of the noisy character images
by achieving higher performance above 97% accuracy on all
noise methods. Subsequently, the DeblurGAN-DenseNet121
achieved 98.53% accuracy and slightly outperformed
the DeblurGAN-MobileNetV2 that achieved an accuracy
of 98.47%. Moreover, the DeblurGAN-CNN architec-
tures significantly outperformed the DenseNet121-TL-nDA
and MobileNetV2-TL-nDA (The result was significant
at p <.05). The misclassified characters are shown
in Figure 7.

We concluded that only training the CNN models using
the transfer learning with noisy data augmentation techniques
could achieve accuracy above 90% on the n-THI-C68 dataset,
although, very high accuracy is required in the handwritten
character tasks to reduce the error while using the output data.
Importantly, we recommend using the DeblurGAN-CNN
architectures as this study yielded promising and outstanding
results.

D. COMPARISON OF THE DEBLURGAN-CNN
ARCHITECTURE AND OTHER APPROACHES

We selected two DeblurGAN-CNN architectures:
DeblurGAN-MobileNetV2 and DeblurGAN-DenseNet121,
to evaluate generalization ability on other noisy datasets
n-MNIST and THCC-67. Comparisons of results on the
n-MNIST and THCC-67 datasets with the GAN-CNNs and
other approaches are presented in Table 5 and Table 6.

Table 5 presents the comparison results between the pro-
posed DeblurGAN-CNN architectures and other approaches
on the n-MNIST dataset. As a result, the accuracy of
the DeblurGAN-MobileNetV2 slightly outperformed the
DeblurGAN-DenseNet121. The DeblurGAN-MobileNetV2
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FIGURE 7. lllustration of misclassified characters on the test set of the
n-THI-C68 dataset using DeblurGAN-CNN.

achieved the best accuracy on the n-MNIST dataset using
AWGN and AWGN+-Contrast noise methods.

The experimental results on the n-MNIST dataset showed
that the optimal CNN-Hopfield network achieved an accuracy
of 99.18%, 99.74%, and 97.53% when the AWGN, motion
blur, and AWGN+Contrast noises were applied, respectively.

E. COMPARISON OF THE DEBLURGAN-CNN
ARCHITECTURE AND OTHER APPROACHES

We selected two DeblurGAN-CNN  architectures:
DeblurGAN-MobileNetV2 and DeblurGAN-DenseNet121,
to evaluate generalization ability on the other noisy datasets
n-MNIST and THCC-67. Comparisons of results on the
n-MNIST and THCC-67 datasets with the GAN-CNNs and
other approaches are presented in Table 5 and Table 6.

Table 5 compares the results between the proposed
DeblurGAN-CNN architectures and other approaches on
the n-MNIST dataset. As a result, the accuracy of
the DeblurGAN-MobileNetV2 slightly outperformed the
DeblurGAN-DenseNet121. The DeblurGAN-MobileNetV2
achieved the best accuracy on the n-MNIST dataset using
AWGN and AWGN+Contrast noise methods.

The experimental results on the n-MNIST dataset showed
that the optimal CNN-Hopfield network achieved an accuracy
of 99.18%, 99.74%, and 97.53% when the AWGN, motion
blur, and AWGN+Contrast noises were applied, respectively.

On the other hand, the DeblurGAN-MobileNetV2
achieved 98.93%, 99.36%, and 97.59% accuracies when
applying the AWGN, motion blur, and AWGN+Contrast
noises, respectively. Further, the DeblurGAN-MobileNetV?2
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FIGURE 8. lllustration of the misclassified characters on the THCC-67
dataset using DeblurGAN-Densent121.

TABLE 5. The performance comparison of DeblurGAN-CNN architectures
with other approaches on the n-MNIST dataset.

Methods Noise Methods
Motion AWGN+
AWGN Blur Contrast
PQ-DBN [46] 90.07 97.40 92.16
Dropconnect DBN [50] 97.57 97.20 96.93
PixelCNN PQ-DBN [50] 97.62 97.20 95.04
PCGAN-CHAR [52] 98.43 99.20 97.25
Optimal CNN-Hopfield Network [53] 99.18 99.74 97.53
DeblurGAN-MobileNetV2 (Proposed 98.93 99,36 97.59
method)
DeblurGAN-DenseNet (Proposed 08 89 99.40 9751
method)

TABLE 6. The performance comparison of DeblurGAN-CNN architectures
with the HOGFoDRs-SVM method on the THCC-67 dataset.

Methods Accuracy
HOGFoDRs-SVM [26] 70.74
DeblurGAN-MobileNetV2 (Proposed method) 80.63
DeblurGAN- DenseNet121 (Proposed method) 80.68

architecture outperformed the optimal CNN—Hopfield net-
work on the n-MNIST dataset when applying AWGN-+
Contrast noise.

Undoubtedly, the DeblurGAN-CNN architectures demon-
strated the highest accuracy performance compared with
other methods on the n-MNIST dataset when AWGN+
Contrast noise was applied.

Table 6 evaluated the DeblurGAN-CNN architec-
tures on the THCC-67 dataset and compared them
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FIGURE 9. lllustration of the validation and training loss

(a) DenseNet121-TL-nDA (b) DeblurGAN-DenseNet121 and (c) comparison
of improving in validation loss.
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with the HOGFoDRs-SVM method. We showed that
the proposed DeblurGAN-CNN architectures significantly
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outperformed the existing method by more than 10%.
Consequently, we achieved only 80.68% accuracy with the
DeblurGAN-DenseNet121.

We illustrated the misclassified characters recognized
using the DeblurGAN-DenseNet121, as shown in Figure 8.

Also, there is still scope to increase the performance of
this dataset. Indeed, the proposed DeblurGAN-CNN archi-
tectures could be applied to classify the noisy image datasets,
even with the THCC-67, the unseen noisy dataset.

VI. DISCUSSION

We observed the training loss between the DenseNetl21-
TL-nDA and DeblurGAN-DenseNetl21, as shown in
Figures 9(a) and 9(b). The improvement of validation loss
is shown in Figure 9(c). It can be seen that the training
loss of the DeblurGAN-DenseNet121 is relatively low in the
early epochs due to the transferring of pre-trained weights.
The training loss of the DeblurGAN-DenseNet121 is always
lower than the DenseNet121-TL-nDA.

As shown in Figure 10, we found that the DenseNet121
model with TL (DenseNet121-TL) achieved unsatisfactory
performance when evaluated on the noisy images. The accu-
racy of DenseNet121-TL quickly dropped when the PSNR
value was increased. The result shows that DenseNet121-TL-
nDA obtained much better performance than DenseNet121-
TL. However, the accuracy of DenseNetl121-TL-nDA was
quickly decreased when the PSNR value was higher than 20.
Furthermore, the DeblurGAN-DenseNet121, when training
using TL-nDA methods, achieved high accuracy even when
the PSNR value was increased more to than 26, with an
accuracy above 90%.

Accuracy vs PSNR
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FIGURE 10. The effectiveness of different denoise architectures proposed
to recognize the noisy character images on the n-THI-C68 dataset.

We also discussed in-depth the proposed DeblurGAN-
CNN architecture and the optimal CNN-Hopfield network
on the n-MNIST dataset in terms of accuracy. Therefore,
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the optimal CNN-Hopfield network [53] outperformed our
proposed architecture because the optimal CNN-Hopfield
network is an ensemble method that combines many CNN
outputs to achieve better recognition. The ensemble method
has been reported to guarantees better accuracy in much
published research [54], [55], [56]. On the other hand, the
DeblurGAN-CNN architecture is a deep learning architec-
ture that combines GAN and CNN architectures. So, only
one output is recognized from the proposed architecture.
Consequently, the optimal CNN-Hopfield network achieved
an accuracy of 62%, 92%, and 97.52% when recognized
using one, two, and three CNN models. In comparison, our
proposed method achieved an accuracy of 98.93% using only
one model and given an accuracy higher than 6% compared
to the optimal CNN-Hopfield network that uses three CNN
models.

Furthermore, finding texts that appear in natural scene
images is challenging. To solve this challenge, object and
scene text detection in the wild should be first applied to
obtain the region of interest, which is the area of texts.
Second, we could employ the DeblurGAN-CNN method to
denoise and recognize the text in the natural scene images.
This solution could enhance the recognition performance.
In future work, we will concentrate on finding and recogniz-
ing text that appears in natural scene images.

VIi. CONCLUSION

The performance of the handwritten character recognition
systems decreases in consequence of many problems, such as
handwriting styles, degradation of the documents, and noise
appearance while transforming documents into a digital for-
mat. This research mainly focused on the denoise and recog-
nition of noisy handwritten character images. Consequently,
the robust generative adversarial network (GAN) combined
with the convolutional neural network (CNN) architecture,
called DeblurGAN-CNN, was proposed to synthesize new
clean handwritten characters from noisy handwritten char-
acters and recognition with improved handwritten charac-
ter performance. For the CNN architecture, we combined
two state-of-the-art CNNs: MobileNetV2 and DenseNet121,
with the DeblurGAN, called DeblurGAN-MobileNetV2 and
DeblurGAN-DenseNet121. The DeblurGAN-CNN architec-
tures were trained using the transfer learning technique and
applying the noisy data augmentation techniques to create a
robust model. The most beneficial aspect of the DeblurGAN-
CNN models was that they could learn and generalize from
many noisy methods, including low resolution, additive white
Gaussian noise (AWGN), low contrast, motion blur, and
mixed noise.

To evaluate the denoise model, the DeblurGAN pro-
duced significant output that achieved a high peak signal to
noise ratio (PSNR) and structural similarity index (SSIM)
values. As a result, the DeblurGAN architecture could
remove various noises from the noisy handwritten char-
acter images. For the accuracy performance, the results
show that the DeblurGAN-CNN architectures generated
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strong handwritten character images and achieved the
highest performance on the n-MNIST and n-THI-C68
datasets when compared with other existing methods.
Also, both DeblurGAN-DenseNet121 and DeblurGAN-
MobileNetV2 presented significant performance and out-
performed the HOGFoDRs-SVM on the THI-C68 and
THCC-67 datasets. The DeblurGAN-CNN architectures
achieved an accuracy above 98%, 97.59%, and 80.68% on
the n-THI-C68, n-MNIST, and THCC-67 datasets. Subse-
quently, the DeblurGAN-CNN architectures, which used the
DenseNet121 and MobileNetV2 as the CNN architectures,
achieved high handwritten character recognition performance
with and without noisy handwritten characters.

In the future, we plan to work on the ensemble CNNs
technique and combine the DeblurGAN-CNN architecture as
a part of the ensemble CNNs technique [54], [55] to achieve
much higher accuracy. Another direction for future work is
creating new DeblurGAN-CNN architecture by searching for
efficient CNN architectures with lightweight models. We will
embed DeblurGAN-CNN with the recurrent neural networks
(RNNs) [57] or vision transformers [11], [58] to recognize
word and sentence images. Finally, finding the text from
the natural scene images using the object detection methods
[59], [60] and recognition by our DeblurGAN-CNN is also
another direction we wish to pursue.
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