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ABSTRACT The ensemble learning method is a necessary process that provides robustness and is more
accurate than the single model. The snapshot ensemble convolutional neural network (CNN) has been
successful and widely used in many domains, such as image classification, fault diagnosis, and plant image
classification. The advantage of the snapshot ensemble CNN is that it combines the cyclic learning rate
schedule in the algorithm to snap the best model in each cycle. In this research, we proposed the dropCyclic
learning rate schedule, which is a step decay to decrease the learning rate value in every learning epoch.
The dropCyclic can reduce the learning rate and find the new local minimum in the subsequent cycle.
We evaluated the snapshot ensemble CNN method based on three learning rate schedules: cyclic cosine
annealing, max-min cyclic cosine learning rate scheduler, and dropCyclic then using three backbone CNN
architectures: MobileNetV2, VGG16, and VGG19. The snapshot ensemble CNN methods were tested on
three aerial image datasets: UCM, AID, and EcoCropsAID. The proposed dropCyclic learning rate schedule
outperformed the other learning rate schedules on the UCM dataset and obtained high accuracy on the
AID and EcoCropsAID datasets. We also compared the proposed dropCyclic learning rate schedule with
other existing methods. The results show that the dropCyclic method achieved higher classification accuracy
compared with other existing methods.

INDEX TERMS Snapshot ensemble convolutional neural network, ensemble learning, convolutional neural
network, learning rate schedule, land use classification, aerial image.

I. INTRODUCTION
Most remote sensing applications have been proposed for
scene understanding, including scene classification, scene
retrieval, and scene-driven object detection [1], and computed
based on 11 bands of satellite imagery. However, many pub-
lished datasets have been collected from aerial images that
include only three bands (red, green, and blue) and proposed
for classification, segmentation, and retrieval tasks [2]. In the
last decade, traditional methods, including image processing
and machine learning, have been studied extensively [3], [4].

The appearance of deep learning algorithms has brought
about an interest in by researchers neural networks. Deep
learning algorithms have been applied to solve many
problems, such as image and video classification, speech
recognition, and natural language processing.

The associate editor coordinating the review of this manuscript and
approving it for publication was Pasquale De Meo.

Additionally, the remote sensing community has shifted its
attention to deep learning algorithms and succeeded in image
analysis, land use and land cover evaluation, scene classifica-
tion, segmentation, object detection, andmany other tasks [5].
The deep learning performance depends on the resolution
level of remote sensing images. Although, many researchers
have proposed methods to classify land use and land cover
from the moderate resolution remote sensing images [6].

The theory of the ensemble learning method is to combine
outputs of various machine learning and even deep learn-
ing models and then decide from many strategies a final
prediction resulting in better performance [7]. It uses many
different decision strategies to find the final prediction, such
as unweighted average, weighted average, majority voting,
Bayesian optimal, and stacked generalization. Kulkarni and
Kelkar [8] used ensemble learning methods to classify mul-
tispectral satellite images. Three ensemble learning methods
were compared (bagging, boosting, and AdaBoosting) and it
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was found that the ensemble learning method achieved better
classification results than the single model. Cao et al. [9]
segmented the building areas from the remote sensing images
using a stacking ensemble deep learning model. In their
method, images were first segmented using three models:
FCN-9s, U-Net, and SegNet followed by, optimizing predic-
tion results using a fully connected conditional random field
(CRF). Finally, the multilayer features were extracted using
a sparse autoencoder. Then, the final prediction results were
computed using the Euclidean distance weighting method.

Additionally, several researchers have proposed ensem-
ble learning methods for classifying satellite images.
Minetto et al. [10] proposed an ensemble of convolutional
neural networks (CNNs) for geospatial land classification.
In their method the geospatial images were first sent to
CNNs to predict the output. Hence, the predicted outputs
from CNNs were determined as the final output using a
majority voting method. Diengdoh et al. [11] used weighted
and unweighted ensemble learning for land cover classifica-
tion from the predicted output of various machine learning
methods. Huang et al. [12] proposed an ensemble learning
method for urban land use mapping tasks based on satellite
images, street-view images, building footprints, points-of-
interest, and social sensing data to explain the associations of
land cover, socioeconomic activities, and land use categories.

Furthermore, new kinds of ensemble learning require
expensive computation with no additional training cost while
training neural network models, called snapshot ensemble
learning [13]. The snapshot ensemble learning method aims
to discover several local minimum values in one training.
While training the model, we defined the number of cycles
that we desired to snap the best model. For example, defin-
ing three cycles will return the three best models from
each cycle, called snapshot. Further, the best model was
snapped at theminimum loss value. Additionally, the learning
rate schedule was used to quickly reduce the training loss
value using the cyclic cosine annealing function. In addition,
Wen et al. [14] proposed a new max-min cosine cyclic learn-
ing rate scheduler invented to find the acceptable ranges of
maximum and minimum learning rates used in training.

A. CONTRIBUTION
In this research, we focus on proposing the new cosine cyclic
learning rate schedule by adding a step decay function to
reduce the learning rate that directly decreases the train-
ing loss to converge local minimum in each cycle, called
dropCyclic. For the dropCyclic learning rate schedule, the
learning rate starts at the maximum learning rate. Further,
the training loss decreases to converge on a local minimum
while training in the first cycle. In the next cycle, the new
maximum learning rate, which is a smaller value than the pre-
vious learning rate, is defined using the dropCyclic method.
Consequently, the dropCyclic method narrows the learning
rate range from the start until the last cycle. The snapshot
ensemble CNN based on the dropCyclic learning rate sched-
ule is proposed for aerial image classification. The proposed

method is evaluated on three aerial image datasets: UCM,
AID, and EcoCropsAID, and achieved good performance.

B. OUTLINE OF THE PAPER
This paper is organized into five sections, as follows.
Surveys of the related works are presented in Section 2.
Section 3 presents the snapshot ensemble CNN for aerial
image classification and the new learning rate schedule.
In Section 4, three aerial image datasets are briefly described.
Section 5 presents the experimental results and discussions.
The conclusion and future work are presented in Section 6.

II. RELATED WORK
In this section, we briefly explain the research related to the
ensemble learning and snapshot ensemble CNNs, including
ensemble learning, snapshot ensemble CNN, and learning
rate schedules for snapshot ensemble CNN.

A. ENSEMBLE LEARNING
Ensemble learning methods have been a growing research
area in recent years. In this study, we surveyed ensemble
learning methods with only two strategies: decision and
ensemble.

1) THE DECISION STRATEGY
The outputs of other classifiers are combined and classified
to the final output with various strategies, such as unweighted
average, weighted average, majority vote, Bayes optimal, and
stacked generalization [7]. Kim and Lim [15] proposed the
ensemble CNNs method to learn on a large vehicle type
dataset. The dataset contained more than 500,000 images
and had 11 classes. The bagging method was used to ran-
domly select the training data because the image distribu-
tion in each class was imbalanced. In the ensemble CNNs,
the training images selected using the bagging method were
transferred to the three CNNs. While training the CNN,
the data augmentation techniques (flip, rotation, AR-fixed,
and AR-fixed rotation) were applied. The weighted average
method was applied for the final prediction and achieved
high performance. Minetto et al. [10] used state-of-the-art
CNNs (ResNet50 and DenseNet161) and a majority voting
method for geospatial land classification on multispectral
images. In the first step, 12 CNN models were created using
various settings, such as data augmentation, image crop style,
and class weighting. The output of this step was the proba-
bilities obtained from 12 CNN models. In the second step,
the output probabilities were classified using the majority
voting method. However, the correct prediction was accepted
when the outputs from the CNNs were correct in more than
five models. Their proposed method achieved an accuracy
of 94.51% on the FMOW dataset.

Moreover, Diengdoh et al. [11] classified land cover using
the ensemble learning method based on satellite imagery.
Their study classified the land cover images into six classes
using the unweighted ensemble prediction method. First, four
machine learning techniques: K-nearest neighbor (KNN),
naive Bayes (NB), random forest (RF), and support vector
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machine (SVM), were proposed to predict probability out-
puts. Second, the probability outputs were classified using
the unweighted ensemble learning method for the final out-
put. Sefrin et al. [16] used three voting methods: unison
vote, absolute majority, and no majority, to detect a land
cover change from time-sequence Sentinel-2 images. The
main architecture was the combination between the fully
convolutional neural network (FCN) and long short-
term memory (LSTM), called FCN+LSTM architecture.
The time-sequence images were first classified by the
FCN+LSTM model and output as six classification maps
and the final output classified using the voting method. The
results showed that the final predicted class using unison or
the absolute majority method achieved high accuracy.

2) THE ENSEMBLE STRATEGY
The ensemble strategy uses the weak learner to create a
stronger learner and minimize errors while training. It also
has various ensemble strategies. For instance, the bagging
ensemble randomly selects subsets of the independent data
of the same size. Then, the first, second, and N subsets are
trained using the first, second, and N classifiers, respec-
tively. Finally, fusing the output of the base classifiers
with the majority voting method for predicting the final
output [7], [15]. The boosting strategy, the original data is
given to classify using a weak classifier. The original data
that was misclassified from the weak classifier is weighted,
and called weighted data, due to a decrease in bias obtained
while training the weak classifier. Further, the weighted data
is sent to the second weak classifier and again weighted to the
misclassified data. It could repeat training with a weak classi-
fier many times until it obtained the best weak classifier [8].

The idea of a combination between ensemble strategy
(bagging and boosting learning) and the CNN-based method
was proposed to short-term load forecasting [17]. In [17],
the CNN model was firstly trained on the existing dataset
to create the pre-trained CNN model. Then, the fine-tuned
model was created by training the pre-trained CNN model
from the first phase with the new dataset. Finally, the weak
CNN models from phases one and two were constructed to
create a robust model. Consequently, the average weighted
method was used to compute the prediction result.

Korzh et al. [18] proposed the bagging ensemble and the
stacking of CNN to classify remote sensing imagery. In their
method, image processing techniques were first applied to
the original images to reduce noise and increase sharpness.
Then, the set of the original images was sent to CNN mod-
els (AlexNet, GoogLeNet, and VGG19) to extract the first
feature. Also, the set of processing images was sent to CNN
models to extract the second feature. Hence, the first and sec-
ond features of more than 16,000 features were concatenated
before sending to the machine learning technique. In their
experiments, many machine learning techniques were com-
pared, including SVM with different kernels (linear, radial
basis function, and polynomial), random forest, and logistic
regression. As a result, the SVMwith a linear kernel obtained

the highest performance on the Brazilian coffee scenes
dataset with an accuracy of 96.11%.

B. SNAPSHOT ENSEMBLE CNN
The snapshot ensemble method was first proposed by
Huange et al. [13]. The main purpose of the snapshot ensem-
bles was to train CNNone time and obtainmore CNNmodels.
Therefore, while training the original CNN model, the model
converged the minimum training loss value at the end. Hence,
only one CNN model was obtained from the original CNN
model. On the other hand, cyclic cosine annealing was used to
converge multiple training loss values. The best CNN model
in each cycle was used, called snapshot. Consequently, the
output probability of each CNN model was calculated using
the softmax function. Additionally, the unweighted average
method was used as the final prediction. The output prob-
abilities were averaged and the maximum probability was
selected. The snapshot ensemble method was evaluated on
various image classification datasets and achieved the best
performance compared with a single CNN model.

In 2019, Wen et al. [14] proposed a new snapshot ensem-
ble CNN for fault diagnosis. The max-min cosine cyclic
learning rate scheduler (MMCCLR) was proposed instead
of cyclic cosine annealing. The log-linear learning rate test-
ing (LogLR) method was invented to search the fitting
range of the max-min learning rate when encountering new
datasets. The MMCCLR method was evaluated on three
datasets (bearing dataset of Case Western Reserve Uni-
versity, self-priming centrifugal pump dataset, and bearing
dataset) and achieved very high accuracy on three datasets
with 99.9%.

Moreover, Babu and Annavarapu [19] modified the snap-
shot ensemble method to classify COVID-19 from chest
X-ray images. For training the CNN model, the pre-trained
model ResNet50 was used and trained on the chest X-ray
images. The data augmentation techniques (rotation, zoom,
flip, and shift) were also appliedwhile training. Subsequently,
the weighted average method was used for ensemble learn-
ing instead of the unweighted average method. Hence, the
weighted parameter was updated until it did not improve
accuracy performance. The modified snapshot ensemble
method achieved 95.18% accuracy on the COVID-19 XCR
dataset and outperformed existing methods. Puangsuwan and
Surinta [20] used the snapshot ensemble method to clas-
sify plant leaf diseases. Four CNN architectures (VGG16,
MobileNetV2, InceptionResNetV2, and DenseNet201) were
used as the backbone architecture of the snapshot ensemble
method. The rotation method was used as the data aug-
mentation technique while training the CNN models. In the
snapshot ensemble method, training the DenseNet201 model
using four cosine annealing cycles achieved the highest
accuracy of 69.51% on the PlantDoc dataset compared to
other ensemble methods (unweighted ensemble and weighted
ensemble).

For the aerial images, Dede et al. [21] studied various
ensemble strategies (including homogeneous, heterogeneous,
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and snapshot ensemble) to classify aerial scene images.
In their experiments, two pre-trained CNNmodels were used:
Inception andDenseNet. The snapshot ensemblemethodwith
Inception as a backbone architecture achieved an accuracy
of 96.01% on the RESISC45 dataset. However, the snapshot
ensemble method did not attain the best accuracy on the AID
dataset. The best algorithm on the AID dataset was the het-
erogeneous strategy combining Inception and DenseNet and
classified using themulti-layer perceptron (MLP). It achieved
an accuracy of 97.15% on the AID dataset.

C. THE CYCLICAL LEARNING RATE FOR SNAPSHOT
ENSEMBLE CNN
The popular optimization algorithm used while training the
CNN model is stochastic gradient descent (SGD). SGD is
used to update parameters of the CNN model until it con-
verges to the local minimum value. In the original snapshot
ensemble method, the SGD optimizer and the cyclic cosine
annealing were computed to quickly decrease the training
loss to converge the local minimum [13]. The training loss
decreased very fast compared to the original CNN model.
Wen et al. [14] proposed a new snapshot ensemble method
that used the MMCCLR method to find the range of learn-
ing rates. Petrovska et al. [22] used an adaptive learning
rate schedule with a triangular policy to train the snapshot
ensemble method. Furthermore, Hung et al. [23] proposed
a two-stage cyclical learning rate method using triangular
methods. The triangular and triangular2 methods were used
in the first and second states to find the best stable model and
required few iterations while training.

III. PROPOSED SNAPSHOT ENSEMBLE CNN FOR AERIAL
IMAGE CLASSIFICATION
The snapshot ensemble CNN was first proposed by
Huang et al. [13] with the simple concept of finding many
local minima values and then snapping the best CNN model
at the local minimum in each cycle. Subsequently, the outputs
of CNN models were combined and computed using the
ensemble method. The essence of the snapshot ensemble
CNNmethod is the cyclic learning rate schedule, which is the
cyclic cosine annealing (CCA) schedule. The CCA schedule
allowed the learning rate to decrease quickly, stimulating the
CNN model to reach local minimum after a few epochs.
The snapshot ensemble CNN produces lower errors than
a single CNN model. This section briefly describes 1) the
snapshot ensemble method and 2) the cosine cyclic learning
rate schedule, including cyclic cosine annealing, max-min
cosine cyclic, and the proposed dropCyclic.

A. SNAPSHOT ENSEMBLE METHODS
The ensemble method is the final step of the snapshot ensem-
ble CNN to enhance accuracy based on diverse CNN models
from single training. We trained the CNN model using the
proposed dropCyclic method and snapped the best CNN
model from each cycle in the previous step. The output prob-
abilities of each CNN computed using the softmax function

were combined and classified using the unweighted average
ensemble method. Indeed, the lastN models are significant to
have the lowest error. We then normally ensemble the last N
models. The ensemble method is calculated as Equation (1).

ŷ =
1
M

∑M

j=1
fj (1)

where M is the number of CNN models and fj is the output
probabilities of CNN model j that is computed using the
softmax function.

B. COSINE CYCLIC LEARNING RATE SCHEDULE
1) CYCLIC COSINE ANNEALING
The cyclic cosine annealing (CCA) is the primary learning
rate schedule of the snapshot ensemble CNN method used
while training the CNN model. CCA allows the CNN to
lower the learning rate faster than the traditional CNN model
and converge to diverse local minimums [13]. The CCA
curve training with 100 epochs and using five cycles (M ),
whenM1,M2, . . . ,M5 denote the CNN model for each local
minimum, as shown in Figure 1. The CCA is computed as
Equation (2).

η =
ηinit

2
(cos

(
πmod(t − 1, [T/M ])

[T/M ]

)
+ 1) (2)

where η stands for the learning rate of current iteration, ηinit is
the initial learning rate, t is for the current iteration number,
T is the total iterations, andM is the number of cycles.

In the CCA, only the initial learning rate (ηinit ) is required
to be adjusted. As a result, the wrong learning rate will cause
the training process to not converge with the local minimum
at the end of each cycle.

FIGURE 1. Illustration of the cyclic cosine annealing curve training with
100 epochs and using five cycles.

2) MAX-MIN COSINE CYCLIC LEARNING RATE SCHEDULER
Wen et al. [14] proposed the max-min cosine cyclic learning
rate scheduler (MMCCLR). The upper and lower boundaries
of the learning rate were proposed to adjust the boundary
of the learning rate. However, in the MMCCLR, the log
linear learning rate test (LogLR Test) method was proposed
to find the learning rate range, which is the max and min
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learning rates. The LogLR Test method and the MMCCLR
are calculated as Equation (3) and Equation (4).

log10η = log10ηLRmin + (log10ηLRmax − log10η
LR
min)×

[t, b]
[T , b]

(3)

η = ηmin +
(ηmax − ηmin)

2

×(1+ cos
(
πmod(t − 1, [T/Mb])

[T/Mb]

)
) (4)

where ηmin is the minimum learning rate and ηmax is the
maximum learning rate that is tested using Equation (2).

3) PROPOSED DROP CYCLIC COSINE LEARNING RATE
SCHEDULE
In this study, we proposed a drop cyclic cosine learning rate
schedule, called dropCyclic. The dropCyclic is the systematic
reduction of the learning rate over a specific time during
training. This research aims to decrease the learning rate that
cuts by a constant factor called the drop parameter, every
constant number of epochs (see Figure 2), as same as the
step decay schedule [24]. The dropCyclic is also efficient in
discovering the diversity of local minimums in each cycle
using the c parameter.

FIGURE 2. Illustration of the step decay schedule.

Moreover, in dropCyclic, the maximum learning rate in
each cycle is changed according to the drop parameter. While
the learning rate range is limited, the CNN model can faster
converge to the local minimum. The equation of the drop-
Cyclic is computed as Equation (5).

η =
ηinit

2
× dropfloor((1+t)/c)×(1+cos(

πmod([t,b],[T ,/Mb])
[T/Mb] )) (5)

where ηinit is the initial learning rate, drop is the step decay
parameter that drops the learning rate in every n epoch, c is a
constant number that lets the model change to the new local
minimum in the next cycle.

IV. AERIAL IMAGE DATASETS
A. UC MERCED LAND USE (UCM) DATASET
Yang and Newsam [25] first proposed the UCM dataset
for land use classification tasks collected from the USGS
national map urban area imagery. The aerial images were

extracted from large images and divided into 21 classes, such
as agricultural, forest, golf course, beach, harbor, buildings,
medium residual, sparse residential, and dense residential.
It is stored in the RGB color space image with 256 × 256 ×
3 pixels. The UCM dataset contains 2,100 images and some
examples of the UCM dataset are shown in Figure 3. How-
ever, the challenge of the UCM dataset is that classes of
medium residual, sparse residential, and dense residential, are
similar and difficult to classify, as shown in Figure 4.

FIGURE 3. Examples of the UCM dataset: a) agricultural, b) beach,
c) buildings, d) river, and e) tennis court.

FIGURE 4. Illustration of the (a) sparse residential, (b) medium
residential, and (c) dense residential.

B. AERIAL IMAGE DATASET (AID)
The AID [26] was proposed for aerial scene classifica-
tion tasks. It has 10,000 images and contains 30 different
aerial scene classes, for example, dense residential, medium
residential, sparse residential, stadium, industrial, bridge,
and baseball field. Each class has approximately 200 to
400 images of 600 × 600 pixels. The AID was collected
from the Google Earth application at resolution of 8 to about
0.5 meters. Examples of the AID are shown in Figure 5.

C. ECOCROPSAID DATASET
Thailand’s economic crops aerial image dataset (EcoCrop-
sAID) was proposed by Noppitak and Surinta [27] for land
use classification. The EcoCropsAID dataset was collected
according to the information on the cultivation of economic
crops in different regions between 2014 and 2018 obtained
from Agri-Map Online. The economic crops aerial images
were collected from the Google Earth application at
resolution of 30 to 0.2 meters. The images were stored in the
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FIGURE 5. Example aerial images of the AID dataset: a) airport, b) bridge,
c) desert, d) pond, and e) storage tanks.

FIGURE 6. Examples of the EcoCropsAID dataset: a) cassava, b) sugarcane
c) longan d) rubber, and e) rice.

RGB format with 600×600 pixels. It has 5,400 aerial images
of five classes: rice, sugarcane, cassava, rubber, and longan.
Example images of the EcoCropAID dataset are shown in
Figure 6. The challenges of the EcoCropsAID dataset are that
the pattern of each class is quite similar (see Figure 7), and
various patterns occur in the same class (see Figure 8).

The details of the three aerial image datasets used in our
experiments are summarized in Table 1.

TABLE 1. The summary of three aerial image datasets: UCM, AID,
ECOCropsAID.

V. EXPERIMENTAL RESULTS AND DISCUSSION
We demonstrated the effectiveness of the proposed cyclic
learning rate (dropCyclic) and compared it with two existing
cosine cyclic learning rate methods: cyclic cosine anneal-
ing (CCA) and themax-min cyclic cosine learning rate sched-
uler (MMCCLR) on three aerial image datasets. For the
backbone of the snapshot ensemble, we compared three CNN
architectures: MobileNetV2, VGG16, and VGG19.

FIGURE 7. Illustration of the similarity patterns between two classes:
(a) longan and (b) rubber and (c) cassava and (d) rice, of the EcoCropsAID
dataset.

FIGURE 8. Illustration of the diversity in the patterns of the EcoCropsAID
dataset. Examples of (a) longan and (b) rubber images.

All the experiments were trained and evaluated on a Linux
operating system using Intel(R) Core-i9-9900K CPU @
3.60GHz x 16, RAM 32GB, and GPU GeForce GTX 1080Ti
with RAM 11GB GDDR5x. We implemented all snapshot
ensemble methods based on the TensorFlow deep learning
framework with the Keras library.

A. EVALUATION METRICS
In this experiment, we used K-fold cross-validation (cv)
with K = 5 over the training set to prevent overfitting prob-
lems. Hence, the overall accuracy (%) and standard devi-
ation evaluated the training set. Further, test accuracy was
used to evaluate the classification performance, and the
results were comparedwith existing snapshot ensemblemeth-
ods. The accuracy performance was computed as shown in
Equation (6).

ACC =
TP+ TN

TP+ FN + FP+ TN
× 100 (6)
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where TP is a true positive (indicates the positive samples
that are correctly classified), TN is a true negative (indicates
the negative samples that are correctly classified), FP is a
false positive (indicates the negative samples that are mis-
classified), and FN is a false negative (indicates the positive
samples that are misclassified).

In order to prevent overfitting problems and compare dif-
ferent learning rate methods, we used the loss difference (LD)
metric to evaluate snapshot ensemble methods when the dif-
ference learning rate policy was performed. The LD is the
evaluation metric that indicates the robustness of the model
against the overfitting problems [28]. Overfitting problems
appear when the low loss value is on the training set, but
the high loss value is on the test set. Hence, it results in low
accuracy. The smallest LD value shows the robustness of the
model, which is computed as Equation (7).

LD = valid loss − trainingloss (7)

where trainingloss and validloss are the loss values obtained
while training on the training set and validation set,
respectively.

B. TRAINING SETTING
1) DATA RATIO AND NUMBER OF EXPERIMENTS
We reported the data ratio and the number of experiments of
each dataset. We divided the dataset into training, validation,
and test sets. We split with the ratio of 4:1:5 for the AID
dataset and 7:1:2 for the UCM and EcocropsAID datasets.
Due to the randomness of the training and validation sets,
we computed experiments three times and reported the mean
accuracy and standard deviation on the validation set. Further,
we trained the model again on the training and validation sets
with the best setting and evaluated the test set.

2) BACKBONE CNN ARCHITECTURES
In our previous study [27], several CNN architectures,
including InceptionResNetV2, DenseNet201, Xception,
ResNet152V2, NASNetLarge, MobileNetV2, VGG16, and
VGG19 were experimented with. We found that the VGG16
and VGG19 achieved the highest accuracy. Subsequently,
MobileNetV2 showed worse accuracy compared to VGG16
and VGG19. Hence, in this study, we mainly experimented
with the snapshot ensemble CNN using three state-of-the-
art architectures as a backbone CNN: VGG16, VGG19 [29],
and MobileNetV2 [30]; to prove that the snapshot ensemble
could manage both the best and the worst CNN architectures
and also enhance the classification performance on the land
use images.

3) SNAPSHOT ENSEMBLE METHODS
We compared the proposed drop cyclic cosine learning rate
schedule (dropCyclic) with two existing learning rate sched-
ules: CCA andMMCCLR.We trained the snapshot ensemble
with 100 epochs and the snapshot parameter with M = 5
cycles.

FIGURE 9. Illustration of the dropCyclic learning rate curve when the
parameters were set as; M = 5 cycles (20 epochs per cycle), drop =
1.0,0.95,0.85,0.75,0.65,0.50 and (a) c = 5, (b) c = 10, and (c) c = 15.

4) DROPCYCLIC LEARNING RATE SCHEDULE METHOD
As shown in Figure 9, we illustrated the learning rate curve of
the dropCyclic learning rate schedule. The learning rate was
computed using Equation 5.

The small c value made the model capable of escaping the
local minimum to find a new local minimum, as shown in
Figure 9(a). With the large c value, the model could have
the energy to discover a new local minimum, as shown in
Figures 9(b) and 9(c). In the case of drop= 1.0, at the first
cycle, themaximum learning rate was 0.0010 and the learning
rate decreased in each epoch until zero. In the second cycle,
the learning rate started again at 0.0010. Further, in the case
of drop= 0.95, the maximum learning rate in the next cycle
was slightly dropped until the last cycle according to the
drop parameter. In our dropCyclic experiments, the drop and
c values were 0.95 and 10, respectively.

The details of the hyperparameter settings on CNN archi-
tectures and the learning rate schedule are summarized
in Table 2.
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TABLE 2. Summarize the hyperparameter settings of the CNN model and
snapshot ensemble methods.

C. CLASSIFICATION RESULTS ON THE UCM DATASET
We first observed the optimal learning rate values to confirm
that the proposed dropCyclic learning rate schedule performs
well when using the optimal learning rate. In this experi-
ment, we trained the snapshot ensemble learning using the
MobileNetV2 as a backbone CNN and the proposed drop-
Cyclic learning rate schedule on the UCM dataset. In this
study, we illustrated the accuracies of various learning rates,
including 0.1, 0.01, 0.001, and 0.0001. The validation accu-
racies are shown in Figure 10.

FIGURE 10. The validation accuracy of the snapshot ensemble CNN using
MobileNetV2 and the dropCyclic method as a learning rate schedule with
different learning rate values (0∼0.001) on the UCM dataset.

The scatter plot Figure 10, show that the validation accu-
racies closed to approximately 98% were achieved when the
learning rate value reached zero. However, we observed that
the validation droppedwhen the learning rate was high. In this
study, the validation accuracy dropped from approximately
80% to 40% when the learning rates were in the range of
0.0008 to 0.0010. Note that the color bar represents the
number of training epochs. Further, high accuracies occur
when the number of training epochs is high, and the learning
rate is close to zero.

Figure 11 presents the test error (%) of snapshot ensem-
ble CNN with different learning rate schedule methods.

FIGURE 11. Loss error (%) of snapshot ensemble CNN with different
learning rate schedule methods: CCA (first column), MMCCLR (second
column), dropCyclic (third column) and CNN architectures:
(a) MobileNetV2 (b) VGG16, (c) VGG19, on the UCM dataset. Each
snapshot ensemble CNN was trained with M = 5 cycles.

We trained the snapshot ensemble CNN with five cycles,
and then the test error of the ensemble method when com-
bined one, two, three, four, and five models, respectively,
were reported. As seen in Figure 11(a) in the third column,
the snapshot ensemble CNN using MobileNetV2 with drop-
Cyclic learning rate schedule obtained the lowest test error
when ensemble with only three models. In comparison, CCA
methods achieved the lowest test error when ensembled with
five models (see Figure 11(a) in the first column).

Furthermore, when training the snapshot ensemble CNN
using VGG19 with MMCCLR and dropCyclic learning rate
schedule methods, as shown in Figure 11(c) in the second and
third columns, the lowest error was achieved by using only
one model. Therefore, the VGG19 discovered the optimal
local minimum at the first cycle according to the number of
aerial images in the UCM dataset with only 2,100 images.
The results are presented in Table 3.

We evaluated the snapshot ensemble CNN using three
evaluation metrics: LD, validation (mean accuracy and stan-
dard deviation), and test accuracy. Note that the LD value
presented the best method for preventing the overfitting prob-
lem. On examining Table 3, we discovered that all learn-
ing rate schedule methods: CCA, MMCCLR, and proposed
dropCyclic, can address the problem with overfitting because
all learning rate schedule methods achieved low LD values.
Consequently, the accuracies of the validation and test did
not show an enormous difference value. As a result, the
proposed dropCyclic learning rate schedule outperformed the
existing learning rate schedules: CCA and MMCCLR when
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TABLE 3. Classification performances (LD, mean validation accuracy,
standard deviation and test accuracy) of the snapshot ensemble CNN
using different learning rate schedules: CCA CCA, MMCCLP, and dropCyclic
and training with different state-of-the-art CNNs: MobileNetV2, VGG16,
VGG19, on the UCM dataset.

training the CNN model with MobileNetV2 and VGG19 in
terms of test accuracy. The proposed dropCyclic method also
outperformed when training with MobileNetV2 and VGG16
on the validation set. In conclusion, the snapshot ensemble
CNN using the MobileNetV2 as a backbone CNN and the
proposed dropCyclic learning rate schedule (drop = 0.95 and
c = 10) achieved the highest test accuracy of 97.38% on the
UCM dataset.

We illustrated the confusion matrix to show that the snap-
shot ensemble CNN method can be proposed to learn from
many aerial image patterns and even similar patterns between
two or more classes, such as classes of residentials, includ-
ing spare, medium, and dense. The medium residential was
misclassified as sparse residential (2 misclassified images)
and dense residential (one misclassified image), as shown
in Figure 12.

FIGURE 12. The confusion matrix of residential classes: sparse, medium,
dense that has a similar pattern.

We compared the snapshot ensemble CNN using the pro-
posed dropCyclic learning rate schedule with existing meth-
ods. The experimental results in Table 4 show that our
method achieved 97.38% on the UCM dataset and outper-
formed other methods, except only the IRELBP+SDSAE

TABLE 4. The performance comparison of the snapshot ensemble CNN
using the proposed dropCyclic learning rate schedule with existing
techniques on the UCM dataset.

method that slightly obtained better cross-validation accuracy
with 97.61%.

The explanation that our proposed method showed
slightly lower accuracy than the improved robust extended
LBP (IRELBP) method could be that the IRELBP is able to
extract robust global features and encode features using the
fisher vector. Further, the features are more robust when the
IRELBP method is combined with the stack denoising sparse
autoencoder (SDSAE). However, our proposed method could
benefit from the CNN architecture that extracts only the
spatial features.

D. CLASSIFICATION RESULTS ON THE AID DATASET
We experimented on a snapshot ensemble CNN using three
CNNs: MobileNetV2, VGG16, and VGG19 and three learn-
ing rate schedules: CCA, MMCCLR, and dropCyclic. The
test errors of each experiment are illustrated in Figure 13.
The graphs show that combiningmoremodels obtained better
performance than using a single model. We obtained the low-
est test error when using MobileNetV2 as a backbone CNN,
as shown in Figure 13(a). Furthermore, using the learning rate
schedule with the CCA method outperformed other learning
rate schedules on both validation and test sets. The overall
performance is shown in Table 5.

TABLE 5. Classification performances of the snapshot ensemble CNN
using different learning rate schedules and training with different
state-of-the-art CNNs on the AID dataset.

Table 5 shows the performance of the snapshot ensemble
CNN methods on the AID dataset, which is an unbalanced
dataset because each class has between 220 to 420 aerial
images (see Figure 14). We used the LD value to measure the
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FIGURE 13. Loss error (%) of snapshot ensemble CNN with different
learning rate schedule methods: CCA (first column), MMCCLR (second
column), dropCyclic (third column) and CNN architectures:
(a) MobileNetV2 (b) VGG16, (c) VGG19, on the AID dataset. Each snapshot
ensemble CNN was trained with M=5 cycles.

FIGURE 14. Class distribution of the AID dataset.

overfitting problems that can be foundwhen training the CNN
model. We found LD values between 0.1-0.3 with all exper-
iments. Hence, the test accuracies of all experiments were
higher than the validation accuracies. The snapshot ensemble
CNN can address the problem with overfitting problems.
As a result, using MobileNetV2 and the CCA learning rate
schedule achieved 94.86% accuracy and outperformed other
methods on the AID dataset.

Three models of snapshot ensemble CNN with various
learning rate schedules were selected for receiver operating
characteristic (ROC) comparison, as shown in Figure 15.
The snapshot ensemble CNN using MobileNetV2 and CCA

FIGURE 15. Illustration of the ROC curve for snapshot ensemble CNN
models. The highlighted area is zoomed in at the upper left area of the
curve.

learning rate schedule attained an AUC value of 0.9982.
Using VGG16 and the CCA learning rate schedule and
VGG19 and the dropCyclic learning rate schedule achieved
AUC values of 0.9982 and 0.9981, respectively.

Consequently, the dropCyclic learning rate schedule out-
performed other learning rate schedules when training with
the VGG19. Moreover, we concluded that the snapshot
ensemble CNN using MobileNetV2 could address the unbal-
anced data better than VGG16 and VGG19 architectures.

Table 6 compares the performance of the proposed drop-
Cyclic method with other models for aerial image classifi-
cation. The proposed method outperformed other methods,
except for the BiMobileNet method. The proposed method
achieved an accuracy of 94.58%, while the BiMobileNet
method obtained an accuracy of 96.87% on the AID dataset.
The snapshot ensemble CNN method based on the proposed
dropCyclic method did not solve the unbalanced dataset
problem.

TABLE 6. The performance comparison of the snapshot ensemble CNN
using the proposed dropCyclic learning rate schedule with existing
techniques on the AID dataset.

The explanation that our proposed method presented less
accuracy could be that the BiMobileNet method extracts the
robust features using a pyramid of bottleneck layers and the
LogSoftmax function is used for the classification. In com-
parison, our proposed method uses the softmax function for
the classification.

E. CLASSIFICATION RESULTS ON THE ECOCROPSAID
DATASET
This experiment discovered that combining only one or two
models could achieve the lowest test error, as shown in
Figure 16. Because the EcoCropsAID dataset has only five
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FIGURE 16. Illustrated loss error (%) of snapshot ensemble CNN with
different learning rate schedule methods: CCA (first column), MMCCLR
(second column), dropCyclic (third column) and CNN architectures:
(a) MobileNetV2 (b) VGG16, (c) VGG19, on the EcoCropsAID dataset. Each
snapshot ensemble CNN was trained with M=5 cycles.

classes and each class contains ∼1,000 aerial images, the
CNN models can cope well with many patterns in each class
and are well classified. The overall performance is shown
in Table 7.

TABLE 7. Classification performances of the snapshot ensemble CNN
using different learning rate schedules and training with different
state-of-the-art CNNs on the EcoCropsAID dataset.

Table 7 compares the performance of the snapshot ensem-
ble CNNmethods on the EcoCropsAID dataset. All the snap-
shot ensemble CNN models were trained using five cycles.
We found that all the experiments prevented the overfitting
problems with the small LD values between approximately
0.006 - 0.01. In this experiment, training the VGG16 using
the dropCyclic and the CCA learning rate schedules achieved
the highest validation accuracy of 99.60%. However, the
MMCCLR learning rate schedule slightly outperformed with
an accuracy of 99.26%. Figure 17 shows the confusion matrix
of the snapshot ensemble CNN based on dropCyclic and

FIGURE 17. The confusion matrix of the snapshot ensemble CNN based
on dropCyclic and MobileNetV2 on the EcoCropsAID dataset.

MobileNetV2 on the EcoCropsAID dataset and illustrates
only a few misclassifications.

In addition, we compared the snapshot ensemble CNN
based dropCyclic learning rate schedule and MobileNetV2
with the existing method [27]. The result showed that our
proposed method achieved an accuracy that was 6% higher
than the existing method, which achieved only 92.80%.

F. DISCUSSION
1) LOSS ERROR CURVE OF THE DIFFERENT LEARNING RATE
SCHEDULES
Wediscovered that the learning rate parameter directly affects
the accuracy of the CNNmodel. Hence, we have seen existing
research focused on tuning the learning rate parameter [28],
[35], [36]. However, the learning rate parameter was not the
primary priority in our experiment because the dropCyclic
method was proposed to change the maximum of the learning
rate in each cycle. Further, the maximum learning rate was
decreased in each cycle according to the drop parameter,
as presented in Figure 9.

Figure 18 shows the training loss values of each learning
rate schedule: CCA, MMCCLR, and dropCyclic when train-
ing with the snapshot ensemble CNN using the MobileNetV2
on UCM (see Figure 18(a)), AID (see Figure 18(b)), and
EcocropsAID (see Figure 18(c)) datasets. In this experiment,
the hyperparameters were adjusted, as shown in Table 2.
We adjusted the cycle of the snapshot ensemble CNN to
5 cycles. The loss values started with a high value and quickly
decreased to the lowest, called the local minimum. Subse-
quently, the loss values increased and then decreased again to
the lowest value in the next cycle to find other local minimum
values. We then snapped the best CNN model at the local
minimum value of each cycle and used it in the ensemble
method. However, only training on the UCM dataset showed
that the loss value did not increase toomuch because the aerial
images in the UCM dataset contained only 2,100 images.
Hence, the CNN model can learn and create the model that
is appropriate with a small number of aerial images.
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FIGURE 18. Illustration of the training loss values when training with the
snapshot ensemble CNN using the MobileNetV2 and evaluated with
various learning rate schedules: CCA, MMCCLR, dropCyclic on (a) UCM,
(b) AID, and (c) EcoCropsAID datasets.

2) COSINE CYCLIC LEARNING RATE SCHEDULE WITH MAX
AND MIN VALUES
In our proposed dropCyclic learning rate schedule, we uti-
lized the idea of a step decay schedule to drop the learning
rate in every epoch by adding the step decay process into the
cosine cyclic learning rate schedule (see Equation (5)). In our
dropCyclic method, only two parameters were required. The
drop and c parameters. The drop parameter was proposed as a
step decay that drops the learning rate by half every n epoch.
The c parameter allows the model to shift to the new local
minimum in the next cycle, as shown in Figure 9(b). As a
result, the best dropCyclic parameters were drop = 0.95 and
c = 10. Consequently, the proposed dropCyclic learning rate
schedule outperformed other learning rate schedules on the
UCM dataset. Further, the proposed dropCyclic learning rate
schedule achieved high accuracy on the AID and EcoCrop-
sAID aerial image datasets. In conclusion, the proposed drop-
Cyclic learning rate schedule has the advantage that it restricts
the maximum learning rate in each cycle by using step decay
parameters: drop and c. Hence, the maximum learning rate is
not the priority parameter required to adjust.

VI. CONCLUSION AND FUTURE WORK
This research proposed a new learning rate schedule called
the dropCyclic. We developed the concept of the step decay
schedule that decreases half of the learning rate value in
every c epoch, call drop. The drop parameter was con-
tained in the cosine cyclic learning rate schedule. It con-
tained two parameters, the drop and c parameters. The benefit
of the dropCyclic learning rate schedule is that the learn-
ing rate was dropped in the next cycle according to the
drop parameter. The method allows the convolutional neural
network (CNN) model to discover the new local minimum in

the subsequent cycle using the c parameter. We evaluated the
proposed dropCyclic learning rate schedules and the existing
methods: cyclic cosine annealing (CCA) and max-min cyclic
cosine learning rate scheduler (MMCCLR) on three aerial
image datasets, including UCM, AID, and EcoCropsAID
datasets. Three CNN architectures were compared for the
backbone CNN architectures, consisting of MobileNetV2,
VGG16, and VGG19. The proposed dropCyclic learning rate
schedule achieved the best results on the UCM dataset. The
dropCyclic method obtained very high results on the AID and
EcoCropsAID datasets. In comparison with other methods,
the proposed dropCyclic learning rate schedule outperformed
all methods on the AID and EcoCropsAID datasets, except
on the UCM dataset for which the IRELBP+SDSAE slightly
outperformed the dropCyclic method.

In future work, we will continue to concentrate on the
learning rate schedule, such as adaptive learning rate [37],
cyclical learning rate with triangular, triangular2, and
exp_range policies [23], [38]. Second, we will consider
extracting the spatial and temporal features instead of extract-
ing them using only CNN architectures [38]–[40]. Finally, the
unbalanced data is also a big challenge to be addressed and
enhance the classification performance [41]–[43].
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