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A B S T R A C T

Numerous deep learning methods have been developed to tackle the challenges of recognizing food images,
including convolutional neural networks, deep feature extraction, and deep feature fusion methods. This research
proposes a new architecture called ASTFF-Net that uses deep feature fusion to tackle various challenges in food
recognition, including similarity patterns between two categories, multi-object problems, light conditions,
camera position, noise objects, and blurred images. ASTFF-Net is a robust and adaptive spatial–temporal fusion
network designed to address these challenges effectively. The ASTFF-Net architecture consisted of three net-
works. In the spatial feature extraction network, the ResNet50 architecture was used to extract robust spatial
features, and the reduction operation was utilized to minimize parameter size. Subsequently, the spatial features
were passed through a 1D convolution (Conv1D) to fit the features into the recurrent neural networks. In the
temporal feature extraction network, the spatial features were given to the long short-term memory, allowing the
network to learn from various long sequence patterns. In the adaptive feature fusion network, the robust spatial
and temporal features were fused and assigned to the Conv1D, followed by the softmax function. The ASTFF-Net
architecture is also intended to decrease the number of network parameters and prevent overfitting problems.
Experimental results on four benchmark food image datasets: Food11, UEC Food-100, UEC Food-256, and ETH
Food-101, demonstrate that the proposed ASTFF-Nets, particularly ASTFF-NetB3, were more competitive
compared with other existing methods.

1. Introduction

Nowadays, people care about their health and ensure that they live a
fit and good life. Many food image recognition applications, such as
dietary, personal food logging, nutrition assessment, and social media
applications (Liu et al., 2016; Sahoo et al., 2019; Dong, Sun, & Zhang,
2019; Nordin, Xin, & Aziz, 2019; Jiang et al., 2020), were invented to
satisfy users’ requirements. In order to use the program to its full po-
tential, many applications were then built as mobile applications on
smartphones. They allowed people who use a smartphone to take food
photos and measure nutrition themselves.

To make the food image recognition applications achieve more ac-
curate results in classification, the artificial intelligence algorithms
should deal with uncontrolled photos taken by the users with variations
such as brightness, orientation, noise, and other objects in the food

images. Fig. 1(a) shows some different orientations of spaghetti. The
Peking duck, as shown in Fig. 1(b), is decorated in different styles.
Furthermore, Fig. 1(c) shows other objects in the food images, such as
glasses, plates, forks, spoons, and knives. Many techniques have been
proposed to address these challenges.

Many convolutional neural network (CNN) architectures are
currently proposed for food image recognition systems to facilitate
effective to analysis and classification of real-world food images. CNNs
have also shown state-of-the-art performance on food image recogni-
tion. The fine-tuned models of AlexNet and InceptionV3 architectures
were used to recognize the real-world food images on the benchmark
food image datasets: ETH Food-101, UEC Food-100, and UEC Food-256
(Yanai& Kawano, 2015; Hassannejad et al., 2016). In their experiments,
Yanai& Kawano (2015) obtained a recognition accuracy of 78.77 % and
65.57 % on UEC Food-100 and Food-256, respectively. In comparison,
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Hassannejad et al. (2016) achieved an accuracy of 88.28 % on ETH
Food-101, 81.45 % on UEC Food-100, and 76.17 % on UEC Food-256.

The concept of the ensemble CNNs network, called Ensemble Net,
was proposed by Pandey et al. (2017). In their ensemble net, the input
images were first changed to HSV color space and then histogram
equalization was applied to only the brightness channel. Second, the
food images were sent to fine-tuned CNNs consisting of AlexNet, Goo-
gLeNet, and ResNet. Third, the feature maps that had been extracted
from three CNNs were concatenated and sent to the fully connected
layers. Finally, their proposed network was classified using the softmax
function. Ensemble net performed with a recognition accuracy of 72.12
% on the ETH food-101 and 73.5 % on the Indian food database.

The deep feature extraction technique became the popular method
that extracted the robust deep features based on the convolutional
neural networks (CNNs). The CNN architecture emphasizes that it
computes the weighted parameters from the input images and then
creates unique spatial features. Şengür et al. (2019) extracted deep
features using two CNN architectures: VGG16 and AlexNet. The deep
features were then concatenated and sent to classify using the support
vector machine (SVM) technique. Phiphitphatphaisit & Surinta (2021)
extracted both spatial and temporal features. First, the spatial features
were extracted using ResNet50 and spatial features were subsequently
transferred to the Conv1D-LSTM network to extract the temporal fea-
tures. Finally, the deep features were classified using the softmax
function.

In recent research, convolutional neural network (CNN) architec-
tures have commonly been used for deep feature extraction, known as
spatial features. In our proposed network, initially the spatial feature
extraction network was mainly used for extracting the deep features
using the CNN architectures only for extracting the spatial features. The
convolution operation allows for capturing pixel information in an
image in relation to its neighboring pixels (Kunhoth et al., 2023). Hence,
the correlation between the pixels is computed and extracted. It ensures
that every region of the input image is processed. The convolution
operation not only extracts the spatial features but also reduces the size
of the input matrix (Rodriguez-Martinez et al., 2024). In our experiment,
we used ResNet50 as the backbone network. Furthermore, we transfer
knowledge and fine-tune the ResNet50 model to reduce training time
and improve recognition performance.

Second, the spatial features were transferred to the temporal feature
extraction network according to the extraction of the temporal features.
The spatial features had a size ofM× N× L, whereM× N represents the
size of feature maps and L represents the number of feature maps.
Further, the LSTM network is employed in this process. The most sig-
nificant advantage of the LSTM is that it has feedback connections and
enables the LSTM to learn the long-term sequence (van Houdt, Mos-
quera, & Nápoles, 2020; Pereira-Ferrero, Valem, & Pedronette, 2022;
Prabhakar & Lee, 2022). Assume L is an enormous number, called a
long-term sequence. After extraction, it guarantees that all patterns are
preserved and never lost while training the model.

In the third step of the adaptive feature fusion network, third, the
deep features between the spatial features and temporal features (after
applying the Conv1D) are concatenated and then sent to the global
average pooling (GAP) layer, followed by the batch normalization (BN)
layer. The GAP operation is recommended to replace fully connected
layers in the CNN architectures (Xia, Huang,&Wang, 2020; Wang et al.,

2021). The purpose of the adaptive feature fusion network is to combine
the spatial and temporal information provided by the spatial feature
extraction network and temporal feature extraction network, respec-
tively, in order to represent real-world food image characteristics and
improve the efficiency of a given model.

Recognizing food is more complex than recognizing general objects,
as food dishes have sets of spatial structures that distinguish them from
one another (Feng et al., 2023). Therefore, learning from food images
presents several challenges. For instance, food categories may have
similar patterns, while different patterns may exist within a single food
category. Additionally, images may contain multiple objects, including
two or more food dishes, side dishes, and other noise objects. The matter
becomes more complicated due to differences in camera perspectives
and varying light conditions (Zhang et al., 2023).

Contribution. To better extract the unique deep features from real-
world food images. The significant contributions of this paper are
summarized in the following.

• We introduce a CNN-based network for encoding food images to
extract robust deep features, namely an adaptive spatial–temporal
feature fusion network (ASTFF-Net).

• The ASTFF-Net architecture included three main networks: spatial
feature extraction network, temporal feature extraction network,
and adaptive feature fusion network.

• We enhanced the overall performance of the proposed ASTFF-Net
architecture.

• The experimental results showed that ASTFF-Net significantly out-
performed existing state-of-the-art deep learning techniques on four
real-world food image datasets: Food11, UEC Food-100, UEC Food-
256, and ETH Food-101.

Paper Outline. The remainder of this paper is structured as follows:
Section 2 summarizes the overview of related work. Section 3 describes
the proposed ASTFF-Net. The real-world food image datasets are
explained in Section 4. The experimental results and discussion are
presented in Section 5. The conclusion and future work are given in
Section 6.

2. Related work

Recently, many approaches have been proposed to address the
challenge of real-world food image recognition. The related works are
described in this section, including convolutional neural networks, deep
feature extraction methods, and deep feature fusion methods.

2.1. Convolutional neural networks (CNNs)

CNN architectures are popular and have been proposed to address
the recognition problems in many domains. Many CNN architectures
were proposed to recognize food images, such as VGG16, GoogLeNet,
InceptionV3 (Hassannejad et al., 2016; Liu et al., 2016; Ege & Yanai,
2017; Vijayakumar & Sneha, 2021). Ng et al. (2019) proposed to use
several state-of-the-art CNN architectures comprising MobileNetV2,
ResNet50, InceptionV3, InceptionResNetV2, Xception, and NASNet-
Large for food image recognition. In their experiments, they evaluated
the performance of the CNN architectures on several parameters,

Fig. 1. Illustrated food images (a) similarities in different food types (b) different decoration and (c) non-food items.
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including the impact of the training images, data augmentation tech-
niques, class imbalance, and image resolutions. The results showed that
the Xception perform better than other CNNs on UEC Food-100, ETH
Food-101, and Vireo-Food 172 datasets.

Martinel, Foresti, & Micheloni (2018) invented wide-slice residual
networks (WISeR) based on a residual network. The WISeR architecture
contained two parts: residual network and slice network. In the first
part, the residual network was employed. In the second part, the slice
convolution kernel was proposed. The slice convolution kernel was
designed using the rectangle kernel. The width of the rectangle kernel
was the same size as the width of the input image. This was different
from the standard convolution kernel in that the kernel of the standard
convolution was designed as the square kernel. Further, two parts were
concatenated and given to fully connected layers. The WISeR architec-
ture achieved an accuracy of 89.58 % on the UEC Food-100, 83.15 % on
the UEC Food-256, and 90.27 % on the ETH Food-101 datasets.

Moreover, Tasci (2020) proposed ensemble CNNs using voting
combination rules, called voting based CNNs. For the CNN architectures,
five CNNs, comprising VGG16, VGG19, GoogLeNet, ResNet101, and
InceptionV3, were experimented with. In the ensemble method, six
voting methods (minimum, average, median, max, product, and
weighted probabilities) were evaluated. The voting-based CNNs yielded
84.28 %, 84.52 %, and 77.20 % accuracy rates on ETH Food-101, UEC
Food-100, and UEC Food-256, respectively.

2.2. Deep feature extraction methods

Deep feature extraction methods aim to extract the spatial features
from the input images. They are designed to extract features from
different layers of deep CNN architectures to enhance accuracy perfor-
mance. Hence, the deep features are transferred to the recurrent net-
works and other machine learning techniques to train and create a
robust model. Further, the deep features can also be assigned to the
LSTM network to extract the temporal features.

Ragusa et al. (2016) used AlexNet, VGG, and Network-in-Network
models to extract the deep features from food images. The deep fea-
tures were then given to classify using the support vector machine (SVM)
techniques. The results showed that extracted deep features using
AlexNet architecture and classified using the binary SVM outperformed
extracted deep features using other CNNs. As a result, training the binary
SVM technique on the deep features performed approximately 8 %
better than classification using only the CNN technique.

Aguilar, Bolaños, & Radeva (2017a) proposed to use GoogLeNet
architecture as the feature extraction method. In their method, first, the
deep features were transformed and the best discriminant components
selected using principal component analysis (PCA). Second, the best
components were trained using the SVM technique. Moreover, in SVM,
the grid-search method was used to find the best hyperparameters: cost
and gamma. Finally, the optimal SVM model was trained on the best
components with the best hyperparameters, then the input images were
classified as the food or non-food images. This achieved an accuracy of
94.86 % on the RagusaDS and 99.01 % on the FCD datasets.

The idea of extracting the deep features from various convolution
layers was proposed by Farooq & Sazonov (2017). In their method, the
deep high-level features were extracted from convolution layers 6, 7,
and 8 of the AlexNet architecture. It extracted 4,096, 4,096, and 1,000
features from the images, respectively. Consequently, the SVM classifier
trained deep features from layers 6, 7, and 8 separately. As a result, the
extracted deep feature from layer 6 achieved the highest accuracy with
70.13 % on the Pittsburgh fast-food image dataset. Furthermore,
McAllister et al. (2018) extracted the deep features using ResNet-152
and GoogLeNet architectures from food image datasets. The deep fea-
tures were then classified using four classifiers consisting of SVM,
random forest, neural network, and Naive Bayes. The experimental re-
sults showed that it achieved a very high accuracy of 99.4 % on the
Food-5 k dataset. Subsequently, it attained an accuracy above 90 % on

Food11 and RawFooT-DB datasets. However, it achieved only 64.98 %
on the ETH Food-101 dataset.

2.3. Deep feature fusion methods

The previous research mentioned above has shown that deep CNN
features achieve high performance in classifying food images. In this
section, we will discuss deep feature fusion for food image recognition.
Pandey et al. (2017) presented a fusion of three deep CNN features
consisting of AlexNet, GoogLeNet, and ResNet to classify benchmark
food datasets. In the first layer, three fine-tuned CNNs were used for
feature extraction, and the output was concatenated before being passed
to ReLU activation followed by a fully connected layer and fed into the
softmax function for classification. The experimental result on the ETH
Food-101 dataset achieved 72.12 % accuracy. Aguilar, Bolaños, &
Radeva (2017b) proposed the CNN fusion method based on inception
modules and residual networks. The first step involved separately
training two CNN models. Second, the best results in the validation
dataset were used in the fusion step using the decision template scheme.
The method achieved an accuracy of 86.71 % with the ETH Food-101
dataset.

In addition to the featured fusion methods, adaptive feature fusion
has also been introduced for image classification. For example, Li et al.
(2020) proposed multi-exemplar images and adaptive fusion of features
to enhance blind face restoration. Kumar, Namboodiri, & Jawahar
(2020) used the adaptive feature aggregation to recognize a person. The
method was to combine the pooled features from multiple locations of
the shared feature maps with adaptive weights produced by the atten-
tion module. Zhao et al. (2021) introduced a tracking algorithm with a
multi-level adaptive feature fusion method. From all the research
mentioned above, it was found that the adaptive feature fusion approach
increases the efficiency of image recognition. In our study, we used the
deep feature technique to extract the feature of the food image and fused
the feature with the adaptive spatial–temporal feature fusion method,
descript as follows in section 3.

3. Adaptive spatial-temporal feature fusion network (ASTFF-
Net)

Overview of the Network. The adaptive spatial–temporal feature
fusion network, called ASTFF-Net, is proposed to improve the robustness
of the deep features extracted using deep learning methods. The pro-
posed network has the capability to overcome challenges in recognizing
various types of food dishes, problems in identifying similar patterns
between two categories, multi-objects appearing in a single image,
different light conditions, different perspectives in photography, and
blurred images. The proposed network contains three schemes: a spatial
feature extraction network, a temporal feature extraction network, and
an adaptive feature fusion network. The schematic framework of the
proposed ASTFF-Net architecture is shown in Fig. 2. The following are
the brief details of the ASTFF-Net.

3.1. Spatial feature extraction network

In this network, we propose a spatial feature extraction network, as
shown in Fig. 3, to extract the spatial features from various food images.
According to experimental results given by Phiphiphatphaisit & Surinta
(2020), we chose the ResNet50 architecture (He et al., 2016) which had
achieved the best performance on the benchmark ETH Food-101
dataset.

A brief account of ResNet architecture would highlight that ResNet
has very deep layers, but the residual block shortcuts the connection
from the current layer to one or more layers. The residual block follows
two simple rules. − 1) when the input from the previous residual block
and output of the current residual block are presented as the same
dimension, called identity mapping, it takes outputs from the previous
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block and adds the output from the skipped layers, as shown in Fig. 4(a).
2) When the input of the previous residual block and output of the
current residual block are not the same size, the projection shortcut is
implemented to ensure that the output of the residual block is the same

size after applying the addition operation, as shown in Fig. 4(b).
In our experiment, we trained the network using a pre-trained model

of ResNet50 to speed up the training process. However, we removed the
fully connected and extracted the spatial from the last layers of the

Fig. 2. Overall of the proposed ASTFF-Net.

Fig. 3. Illustration of the spatial feature extraction network.

Fig. 4. Bottleneck block for ResNet50: (a) identity shortcut, (b) projection shortcut. (f denotes the number of filters).
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ResNet50.
We implemented a reduction operation that aimed to adjust the size

of the feature maps. The size of the feature maps that were extracted
using the ResNet50 was defined by the three dimensions (width× height
× number of feature maps). Hence, the input layer of the convolutional
1D block should be in the form of two dimensions. In our study, the
reduction operation was installed between the ResNet50 and Conv1D
block.

In the proposed Conv1D, the spatial features extracted using the
ResNet50 architecture were first given to the reduction operation to
transform the feature maps into one dimension. Second, we computed
the zero-padding operation to the spatial features, followed by the batch
normalization (BN) operation (Ioffe & Szegedy, 2015). Then, the
Conv1D operation with a filter size of 1× 3 and a stride of 1 was
calculated through the spatial features after applying zero padding.
Third, three operations: BN, dropout, and average pooling, were
attached to the network. Finally, the robust spatial features were ob-
tained from the spatial feature extraction network, as shown in Fig. 3.

3.2. Temporal feature extraction network

This section investigated the long short-term memory (LSTM)
network (Hochreiter & Schmidhuber, 1997) to extract the robust tem-
poral features. The LSTM network was proposed to learn patterns in long
sequence data by combining cell state and three gates: input, output, and
forget. In the LSTM network, the cell state function is to provide relevant
sequence information into gates. The gates in the LSTM network choose
which information is allowed and which information is related to keep
or forget while training.

In this research, a sequence of spatial features is computed using the
spatial feature extraction network and directly transferred to the tem-
poral feature extraction network. In order to create a sequence of spatial
features, we extract the feature maps from food images using the
ResNet50 architecture. Subsequently, the feature maps are sent to the
reduction operation to transform the feature maps, followed by the
Conv1D operation. As a result, the sequence of spatial features with a
size of 1× 3× 1024 is then transferred to the temporal feature extrac-
tion network, where 1× 3 is the input dimension and 1024 is the time
steps. This study applied the LSTM network to learn the sequence data
extracted using the spatial feature extraction network described in
Section 3.2. The temporal feature is the output of the LSTM network, as
shown in Fig. 5.

3.3. Adaptive feature fusion network

We propose an adaptive feature fusion network that combines robust
spatial–temporal feature networks extracted from the spatial feature
extraction network (see Section 3.2) and the temporal feature extraction

network (see Section 3.3), as shown in Fig. 6; the details of the adaptive
feature fusion network are as follows.

First, the Conv1D block employed in the adaptive feature fusion
network differs from the Conv1D in Section 3.1. In this network, the
input of the Conv1D block was the temporal feature extracted using the
LSTM network. The filter size of 1× 3 and a stride of 1 was computed in
the Conv1D operation. We trained the network by the rectified linear
unit (ReLU) (Nair & Hinton, 2010) activation function followed by the
dropout layer (Srivastava et al., 2014). Hence, the neural nodes and
their connections were randomly dropped during the training of the
model to avoid the overfitting problem that may occur while training the
network.

Second, two robust features obtained from the Conv1D block and
spatial feature extraction network were fused using concatenation
operation. Further, the robust features were given to the global average
pooling (GAP) layer (Lin, Chen, & Yan, 2014), followed by the BN layer.

Finally, the robust feature vector was classified using the softmax
function.

4. Real-world food image datasets

We evaluated our proposed adaptive feature fusion network (ASTFF-
Net) on four benchmark food image datasets: Food11, UEC Food-100,
UEC Food-256, and ETH Food-100. The details of each food image
dataset are as follows:

4.1. Food11 dataset

Singla, Yuan,& Ebrahimi (2016) established the Food11 dataset that
consisted of 16,643 food images of 11 categories that were bread, dairy
products, egg, dessert, meat, fried food, pasta, seafood, rice, vegeta-
bles/fruit, and soup, as shown in Fig. 7.

4.2. UEC Food-100 dataset

Matsuda & Yanai (2012) collected the UEC Food-100 dataset. It
contains 14,361 images from 100 categories of famous Japanese foods,
such as sushi, eels on rice, pilaf, beef curry, fried noodle, and tempura.
The UEC Food-100 dataset consists of multiple food items in one image
(see Fig. 8(a)) and a single food item in one image (see Fig. 8(b)).

4.3. UEC Food-256 dataset

Kawano & Yanai (2014) proposed the UEC Food-256 image dataset,
which is the extended version of the UEC Food-101 dataset. First, all the
images were collected from Flickr, Bing, and Twitter, using a specific
query. Second, the downloaded images were classified using the Food-
ness method and categorized as food or non-food images. Finally, the

Fig. 5. Illustration of the LSTM network proposed to extract the temporal features.
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UEC Food-256 dataset contained approximately 32,000 food images and
comprised 256 categories with more than 600 food images in each
category after removing noise images. Examples of the UEC Food-256
dataset are shown in Fig. 9(a).

4.4. ETH Food-101 dataset

The ETH Food-101 dataset was proposed by Bossard & Gool (2014),
which consists of the real-world food images downloaded from the
website foodspotting.com. It contains 101,000 food images and has 101
food image categories. The examples of the ETH Food-101 dataset are
shown in Fig. 9(b).

The summary details of four benchmark food image datasets are

shown in Table 1.

5. Experimental results and discussion

In this section, we implemented the adaptive feature fusion network
with the TensorFlow platform running on Google Colab with GPU sup-
port for all the experiments. The proposed adaptive spatial–temporal
feature fusion network (ASTFF-Net) was evaluated on the benchmark
food image datasets, comprising Food11, UEC Food-100, UEC Food-256,
and ETH Food-101.We divided the food image datasets into training and
test sets. The accuracy of the ASTFF-Net was evaluated on the test set.
Moreover, we employed 5-fold cross-validation (CV) over the training
set to find the significance of the proposed network and prevent

Fig. 6. Illustration of the adaptive feature fusion network.

Fig. 7. Some example images of the Food11 dataset.
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overfitting problems.
We evaluated the experimental results using average accuracy,

standard deviation, precision, recall, and F1-score (Fränti & Mariescu-
Istodor, 2023). These metrics were calculated as follows.

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(1)

Precision =
TP

TP+ FP
(2)

Recall =
TP

TP+ FN
(3)

F1 − score = 2×
Precision× Recall
Precision+ Recall

(4)

where true positive (TP) is the number of positive instances that were
correctly classified, true negative (TN) is the number of negative in-
stances that were correctly classified, false positive (FP) is the number of
positive instances that were incorrectly classified, and false negative
(FN) is the number of negative instances that were incorrectly classified.

Additionally, we analyzed the floating-point operations per second
(FLOPS), the number of floating-point operations the system can execute
in one second, to estimate the performance capability of computing
systems, including processors and hardware (Cerar, Bertalanič, & For-
tuna, 2023). The FLOPS is calculated as follows.

FLOPS =
(NumberofFloating − PointOperations)

TimeinSeconds
(5)

In the ASTFF-Net, we used only the pre-trained model of the
ResNet50 architecture with pre-trained weights from the ImageNet
dataset. However, other parts of the framework do not transfer from the
pre-trained model. We trained the ASTFF-Net with the SGD optimizer to
optimize the loss function. The adaptive learning rate was proposed with
the initial value of 0.01 and then reduced to 0.0001 when the loss value
did not decrease after five epochs. The momentum value was set to 0.9

and the weight decay was updated based on the learning rate value and
the number of epochs. The ASTFF-Net was trained for only 50 epochs.
The hyperparameters and the best settings for the spatial feature
extraction network, temporal feature extraction network, and adaptive
feature fusion network are shown in Table 2.

To study the efficiency of the ASTFF-Net, we designed four different
experiments. First, we combined spatial and temporal features, called
the ASTFF-NetB1 model, as shown in Fig. 10(a). Second, the spatial
features were sent to the Conv1d block before combining with the
temporal features, called the ASTFF-NetB2, as shown in Fig. 10(b).
Third, the temporal features were sent to the Conv1D block before
combining with the spatial features, called the ASTFF-NetB3, as shown
in Fig. 10(c). Finally, both spatial and temporal features were given to
the Conv1D block before combining, called the ASTFF-NetB4, as shown
in Fig. 10(d).

5.1. Experiments on the Food11 dataset

We trained four ASTFF-Nets on the Food11 dataset on the training
data based on five-fold cross-validation (5-CV) and evaluated ASTFF-Net
models on a separate test set. The results obtained are presented in
Table 3.

From Table 3, we observed that ASTFF-NetB3, in which the temporal
features were sent to the Conv1D block before combining with the
spatial features, outperformed other ASTFF-Nets on the Food-11 image
dataset. The ASTFF-NetB3 achieved 96.08% accuracy on the training set
using 5-CV and 95.04 % accuracy on the test set, which was the best
network. On the other hand, ASTFF-NetB2 had the worst performance
on both training and test sets. However, performance was only
approximately 1.8 % below that of ASTFF-NetB3. Furthermore, we
determined testing time to measure the computation time of the ASTFF-
Nets. During the testing phase, all ASTFF-Nets achieved similar
computational performance. It spent approximately 5 min to process the
entire test set, approximately 77.8 ms (ms) per food image.

Fig. 11 illustrates the confusion matrix of four ASTFF-Nets. It was

Fig. 8. Example of the UEC Food-100 dataset that contains (a) multiple food items and (b) single food item in one image.
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found that the ASTFF-NetB3 (see Fig. 11(c)) reduced the misclassified
number of images from category egg to bread. It reduced the mis-
classified images from 17 images to only two images. Also, the rice
category that was misclassified to the fruit/veg category was reduced
from 4 images to zero.

Fig. 12 shows the probability of the egg (see Fig. 12(a)) and rice (see
Fig. 12(b)) categories that were corrected classified using ASTFF-NetB3,
but other ASTFF-Nets misclassified it.

In Table 4, we present extensive comparisons of our ASTFF-Nets on
the Food11 dataset with existing state-of-the-art methods. The experi-
mental results confirmed that our ASTFF-Nets increased the accuracy
performance. Additionally, our ASTFF-Nets showed much better results
than extracting the deep features using CNN architectures and
combining them with machine learning techniques, such as artificial
neural networks and support vector machines (McAllister et al., 2018;
Şengür, Akbulut, & Budak, 2019). In conclusion, the ASTFF-NetB3
resulted in the highest accuracy performance of 95.04 %.

5.2. Experiments on the UEC Food-100 dataset

This section showed that our ASTFF-Nets also achieved the best ac-
curacy performance on the UEC Food-100 dataset, which has 100 food
categories. The results attained throughout the testing process are
shown in Table 5.

From Table 5, it is seen that ASTFF-NetB3 significantly outperformed
other ASTFF-Nets on the UEC Food-100 dataset (t-test, p < 0.05). We
observed that the ASTFF-NetB3 performed with higher than 4 % accu-
racy on the 5-CV and higher than 5 % accuracy on the test set when
compared with other ASTFF-Nets. Another observation is that the
ASTFF-NetB3 achieved an F1-score of more than 0.90, which means that
the ASTFF-NetB3 successfully classified food images over a specific
strength with a low false-positive rate. Moreover, all the ASTFF-Net
architectures were rapid with the test set, requiring approximately
77.80 ms per food image.

We illustrated the food images that were correctly classified when
using the ASTFF-NetB3 model, as shown in Fig. 13(a). All the food im-
ages contained only one dish, which means only one food category
appeared in the image. On the other hand, the mostly misclassified food
images, as shown in Fig. 13(b), always included many objects in one
image. For example, the rice dish appears in sauteed vegetables and
ganmodoki categories.

Table 6 compares the performance of our approach architectures on
the UEC Food-100 dataset with existing deep learning techniques. The
accuracy performance of the previous deep learning techniques did not
achieve very high scores, even using the ensemble CNNs method (Tasci,
2020). The highest accuracy was 90.20 % with the visual aware hier-
archy method (Mao et al., 2021). However, the ASTFF-NetB1, B2, and
B4 did not achieve higher performance than the WISeR method.
Consequently, the proposed ASTFF-NetB3 network, that directly gives

Fig. 9. Illustration of (a) the UEC-Food256 and (b) the ETH Food-101 datasets.

Table 1
Illustration of the details of the benchmark food image datasets.

Dataset Category No. of
Images

No. of
Training
Images

No. of
Test
Images

Images per
Category

Food11 11 16,643 12,483 4,160 Imbalanced
UEC
Food-
100

100 14,361 10,771 3,590 Imbalanced

UEC
Food-
256

256 31,395 23,547 7,848 Imbalanced

ETH
Food-
101

101 101,000 75,750 25,250 1,000

Table 2
The best hyperparameter settings of spatial feature extraction, temporal feature
extraction, and adaptive feature fusion networks.

Hyperparameter
Parameter Setting of

Spatial Feature
Extracted
Network

Temporal Feature
Extracted
Network

Adaptive
Feature Fusion
Network

Epoch 50 50 50
Batch size 32 32 32
Optimizer SGD SGD SGD
Learning rate Schedule 0.01 to

0.0001
Schedule 0.01 to
0.0001

0.0001

Momentum 0.9 0.9 0.9
Weight decay Learning rate/

epoch
Learning rate/
epoch

0.0001

Dropout 0.2 0.2 0.2
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the temporal feature to the Conv1D block and then combines it with the
spatial features, demonstrated the highest performance with 91.35 %
accuracy.

5.3. Experiments on the UEC Food-256 dataset

In this section, we evaluated the proposed adaptive network on the
UEC Food-256 dataset in terms of 5-CV, test accuracy, recall, and F1-
score. It has a huge category with 256 menus from Japan and other
countries. The proposed ASTFF-Nets were evaluated on 23,547 training
images and 7,848 test images.

Table 7 shows the evaluation performance of the ASTFF-Nets. We
observed that the ASTFF-NetB3 consistently achieved the highest ac-
curacy and significantly outperformed other ASTFF-Nets (t-test, p <

0.05) on both 5-CV and test sets. The ASTFF-NetB2 slightly decreased
the performance on the UEC Food-256 dataset. Consequently, our pro-
posed ASTFF-Nets achieved above 90 % accuracy. It spent approxi-
mately 10 min on the whole test set (approximately 77.8 ms per food
image).

As illustrated in Fig. 14, we discovered that some food images have
similar texture, color, and pattern characteristics that could harm the
proposed ASTFF-Nets leading to misclassification.

In Table 8, it can be seen that the existing deep learning methods did
not show high accuracy. The WISeR method (Martinel, Foresti, &
Micheloni, 2018) and the visual aware hierarchy method (Mao et al.,

Fig. 10. Illustration of four ASTFF-Nets. (a) The ASTFF-NetB1, (b) ASTFF-NetB2, (c) ASTFF-NetB3, and (d) ASTFF-NetB4.

Table 3
Evaluation performances (average accuracy, ± standard deviation, test accu-
racy, recall, and F1-score) of the ASTFF-Nets on the Food11 dataset. The bold
numbers represent the best ASTFF-Net model.

Model 5-CV Test
Accuracy (%)

Recall F1-
score

Testing Time
(ms/image)

ASTFF-
NetB1

94.26 ±

0.177
93.47 0.935 0.935 77.4

ASTFF-
NetB2

94.17 ±

0.291
93.16 0.932 0.932 77.8

ASTFF-
NetB3

96.08 ±
0.330

95.04 0.950 0.950 77.8

ASTFF-
NetB4

95.54 ±

0.369
94.63 0.946 0.946 78.2
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Fig. 11. Illustration of the confusion matrix of ASTFF-Nets on the Food11 dataset: (a) ASTFF-NetB1, (b) ASTFF-NetB2, (c) ASTFF-NetB3, and (d) ASTFF-NetB4.

Fig. 12. Examples of similar categories between (a) egg and bread and (b) rice and fruit/veg categories classified using ASTFF-NetB3.

Table 4
Recognition performance on the Food11 dataset when compared with existing
methods.

Reference Method Test Accuracy (%)

McAllister et al. (2018) ResNet152 + ANN 91.34
Şengür, Akbulut, & Budak
(2019)

AlexNet + VGGl6 + SVM 88.08

Our Proposed ASTFF-NetB1 93.47
ASTFF-NetB2 93.16
ASTFF-NetB3 95.04
ASTFF-NetB4 94.63

Table 5
The experimental results of the proposed ASTFF-Nets on the UEC Food-100
dataset.

Model 5-CV Test
Accuracy (%)

Recall F1-
score

Testing Time
(ms/image)

ASTFF-
NetB1

86.77 ±

0.231
85.70 0.857 0.857 77.4

ASTFF-
NetB2

86.99 ±

0.267
86.05 0.861 0.861 77.7

ASTFF-
NetB3

92.55 ±

0.168
91.35 0.914 0.914 77.7

ASTFF-
NetB4

89.85 ±

0.344
88.85 0.889 0.889 78.2
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2021) achieved the performance with an accuracy of only 83.37 % and
83.15 % respectively. The proposed ASTFF-Nets performed much better
than the previous methods and achieved greater than 90 % accuracy.
Consequently, the ASTFF-NetB3 always achieved the best performance
with an accuracy of 92.15 %, which is approximately 9 % more than
with the WISeR method.

5.4. Experiments on the ETH Food-101 dataset

In this experiment, we tested the proposed adaptive network on the

ETH-Food101 dataset, which has 75,750 training images and 25,250
test images. It is the largest food image dataset that we evaluated in our
experiments. The results of the proposed ASTFF-Nets are shown in
Table 9.

Table 9 reports that the ASTFF-NetB3 still achieved the best perfor-
mance when compared with other ASTFF-Nets (t-test, p < 0.05, signif-
icant). It achieved a performance of 93.98 % accuracy on 5-CV and
93.06 % accuracy on the test set. Furthermore, we found that the ASTFF-
NetB3 achieved the highest accuracy on four food image datasets: ETH
Food-101, Food11, UEC Food-100, and UEC Food-256. The computa-
tional time with all the ASTFF-Net architectures was approximately
77.8 ms per food image on the test set.

We also observed that ASTFF-NetB3 achieved an F1-score of 0.931
with a high true-positive rate. The illustration of the F1-score, when
classified using the ASTFF-Nets, is shown in Fig. 16. Moreover, for
further investigation, we found noise and non-food objects in some food
categories, such as apple pie and Peking duck. Examples of the noise and
non-food objects are shown in Fig. 15.

Table 10 compares results with our proposed ASTFF-Nets with other
methods. We observed that extraction the deep features using CNN,
Conv1D, and LSTM performed better than training with only CNN ar-
chitectures (Phiphitphatphaisit & Surinta, 2021) and even better than
extracting the deep features and combined with machine learning
techniques. The results in Table 10 show that our ASTFF-NetB1, B3, and
B4 were given an accuracy above 90 %. These networks also out-
performed various existing methods. Consequently, the ASTFF-NetB3
achieved an accuracy of 93.06 %, which is the highest performance on
the ETH Food-101 dataset.

5.5. Discussion

In this research, we discussed several important issues that affect the
performance of the CNN models.

5.5.1. Overfitting with robust network
Naturally, overfitting problems occur when very deep CNN layers are

proposed to create the robust CNN model and trained with too many
example images. With very deep CNN architectures, the CNN model
needs to optimize many hyperparameters. To face this problem, we
proposed the adaptive spatial–temporal feature fusion network, called
ASTFF-Net, which was invented to combine both spatial and temporal
feature extraction networks. The adaptive architectures were designed

Fig. 13. Some examples of sauteed vegetables, rice, and ganmodoki images of the UEC Food-100 dataset were classified using the ASTFF-NetB3 model. The food
images were (a) correctly classified and (b) misclassified.

Table 6
Recognition performance on the UEC Food-100 dataset when compared with
existing deep learning techniques.

Reference Method Test Accuracy
(%)

Liu et al. (2016) DeepFood 76.30
Hassannejad et al. (2016) InceptionV3 81.45
Martinel, Foresti, & Micheloni
(2018)

WISeR 89.58

Tasci (2020) Ensemble CNNs 84.52
Mao et al. (2021) Visual Aware

Hierarchy
90.20

Our Proposed ASTFF-NetB1 85.70
ASTFF-NetB2 86.05
ASTFF-NetB3 91.35
ASTFF-NetB4 88.85

Table 7
Recognition performance of the proposed ASTFF-Nets on the UEC Food-256
dataset.

Model 5-CV Test Accuracy
(%)

Recall F1-
score

Testing
Time
(ms/
image)

ASTFF-
NetB1

92.16 ±

0.192
91.07 0.911 0.911 77.4

ASTFF-
NetB2

92.05 ±

0.155
90.90 0.909 0.909 77.8

ASTFF-
NetB3

93.21 ±

0.324
92.15 0.921 0.921 77.8

ASTFF-
NetB4

92.40 ±

0.301
91.37 0.914 0.914 78.2
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to extract information on the spatial domain and ignore some insignif-
icant information using the temporal network. We evaluated the pro-
posed method using a five-fold cross-validation method (5-CV), as
shown in Table 8, and we found that the ASTFF-Nets could learn well
with many training examples and generalize well with the test set. There
was no great difference between 5-CV and the test set results.

5.5.2. Similarity patterns between two categories
The real-world food images from the benchmark datasets were

downloaded from the internet. Some of the images contained many
noise objects (see Fig. 15(a)), some images had similar patterns (see
Fig. 14(b)) and some images contained similar food objects (see Fig. 14
(c)) that appeared in many food categories. For example, the category of
the bread dish was classified as the egg category because the bread is
served with egg. We then presented the F1-score to measure the preci-
sion of the ASTFF-Net architecture. Furthermore, the confusion matrix,
as shown in Fig. 11(c), confirmed that ASTFF-NetB3 can address the
similarity pattern between two classes: egg and bread.

5.5.3. Multi-object problems
The UEC Food-100 dataset usually contains the multi-object

appearing in one image, as shown in Fig. 13(b). It is not easy to recog-
nize as the correct category because many dishes are included in the
image. As a result, it is misclassified. With the multi-object problem, we
carefully checked the recognition results of the proposed ASTFF-Nets
and found that the proposed network recognized one correct dish
from many dishes that appear in one image. For example, the image
contain fish, soup, rice, and sauteed vegetables in the sauteed vegetable
category. So, the ASTFF-NetB3 classified it as rice, which was one

Fig. 14. Illustration of the similar food images between (a) ramen noodle and tensin noodle, (b) raisin bread and cream puff, and (c) egg sunny side up and green
curry. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 8
Recognition performance on the UEC Food-256 dataset when compared with
existing deep learning techniques.

Reference Method Test Accuracy (%)

Liu et al. (2016) DeepFood 54.70
Hassannejad et al. (2016) InceptionV3 76.17
Martinel et al. (2018) WISeR 83.15
Tasci (2020) Ensemble CNNs 77.20
Mao et al. (2021) Visual Aware Hierarchy 83.37
Our Proposed ASTFF-NetB1 91.07

ASTFF-NetB2 90.90
ASTFF-NetB3 92.15
ASTFF-NetB4 91.37

Table 9
Recognition performance of the proposed ASTFF-Nets on the ETH Food-101
dataset.

Model 5-CV Test Accuracy
(%)

Recall F1-
score

Testing
Time
(ms/
image)

ASTFF-
NetB1

91.88 ±

0.229
91.13 0.911 0.911 77.4

ASTFF-
NetB2

90.16 ±

0.276
89.05 0.890 0.890 77.8

ASTFF-
NetB3

93.98 ±

0.247
93.06 0.931 0.931 77.8

ASTFF-
NetB4

93.56 ±

0.224
92.81 0.928 0.928 78.2

Fig. 15. Example of (a) noise and (b) non-food objects that appear in the ETH Food-101 images.
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category from many categories from the image. To address the multi-
object problem, thus, we recommend applying object detection and
classifying each object.

5.5.4. The effect of the lighting conditions, camera positions, noise objects,
and blurred images

Different people and photographers generally capture real-world
food images using various types of cameras and camera phones. Two
major factors determine the quality of food images: the quality of the
camera phone and the skills of the photographers. For the DSLR camera,
adjusting various parameters, such as focus, flash, shutter speed, and
ISO, can enhance food photography. For the camera phone, when taking
photos in low light conditions with a low-quality camera phone, the
resulting picture may contain noise and blur, resulting in a lower-quality
image. Additionally, people may capture food dishes from different
perspectives, including close-ups, bird-eye views, and even the compo-
sition of other things in the food dish (called noise objects), which
impact recognition accuracy.

To address the issues mentioned above, we utilized ASTFF-NetB2,
our top-performing food image recognition model, to demonstrate its
ability to recognize food dishes in various light conditions, camera po-
sitions and noise objects, and in blurred images, as follows.

Light Conditions. To handle different light conditions, we provided
illustrations for three conditions: natural and adequate lights (see Fig. 17
(a)), flashlight (see Fig. 17(b)), and low light (see Fig. 17(c) and (d)). The
results indicate that ASTFF-NetB3 was accurately recognized with over
90 % confidence, as shown in Fig. 17(a)–(c). The performance of the
ASTFF-NetB3 in recognition of the bread dish was affected by low light
by decreasing the confidence value to 46.4 %, as illustrated in Fig. 17(d).
Nevertheless, the proposed network was still correctly recognized in
low-light conditions.

Camera Positions and Noise Objects. We worked with images of
various meat dishes captured from different camera positions and noise
objects, as shown in Fig. 18. The yield issues affected confidence by
decreasing the confidence value to approximately 70–80 %. Further-
more, the ASTFF-NetB3 still provided accurate recognition.

Fig. 16. Illustration of the F1-score of each category when classified using (a) ASTFF-NetB1, (b) ASTFF-NetB2, (c) ASTFF-NetB3, and (d) ASTFF-NetB4 on the ETH
Food-256 dataset.
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Blurred Images. The different types of cooked eggs and egg dishes
with distinct decorations, along with blurred images, are shown in
Fig. 19. These factors are crucial in identifying food images accurately.
Although ASTFF-NetB3 correctly recognized them, it had a lower con-
fidence value ranging from 60-75 %.

5.5.5. Computational cost and model size
We designed the ASTFF-Nets according to the advantage of extract-

ing the spatial and temporal deep features. Further, three networks were
included in the ASTFF-Nets: spatial feature extraction, temporal feature
extraction, and adaptive feature fusion. Indeed, the ASTFF-Nets had a
larger model size than the CNN and CNN-LSTM networks, as shown in
Table 10. However, when we evaluated the proposed ASTFF-Nets on the
test set, the computation cost of the ASTFF-Nets did not significantly
increase. It increased only around four milliseconds and only 0.6 ms
compared with the ResNet50 and CNN-LSTM respectively. A compari-
son of the FLOPS, testing time, and model size is shown in Table 11.

As shown in Table 11, we use the FLOPS to measure the computing
performance of the ASTFF-Net architectures. ASTFF-NetB1 has the best
FLOPS, only 4.61G. Additionally, when comparing the FLOPs of ASTFF-
NetB1 and ResNet50, we found that the difference between the two
architectures was only 0.8G. Note that in Table 11, G is 109 andM is 106.

Furthermore, we employed the testing time to measure ASTFF-Nets

Table 10
Recognition performance of the ETH Food-101 dataset when compared with
different deep learning techniques.

Reference Method Test Accuracy
(%)

Liu et al. (2016) DeepFood 77.40
Hassannejad et al. (2016) InceptionV3 88.25
Bolanos & Radeva (2016) GoogLeNet 79.20
Pandey et al. (2017) EnsembleNet 72.12
Aguilar et al. (2017b) CNNs Fusion 86.71
Martinel et al. (2018) WISeR 90.27
McAllister et al. (2018) ResNet152 + SVM-RBF 64.98
Şengür, Akbulut, & Budak (2019) AlexNet + VGGl6 + SVM 79.86
Tasci (2020) Ensemble CNNs 84.28
Mao et al. (2021) Visual Aware Hierarchy 87.82
Phiphiphatphaisit & Surinta
(2020)

Modified MobileNetV1 72.59

Phiphitphatphaisit & Surinta
(2021)

ResNet50 + Conv1D-
LSTM

90.87

Our Proposed ASTFF-NetB1 91.13
ASTFF-NetB2 89.05
ASTFF-NetB3 93.06
ASTFF-NetB4 92.81

Fig. 17. Example images of bread dishes captured under various light conditions: (a) natural and adequate light, (b) flashlight, (c), and (d) low light.

Fig. 18. Example images of meat dished captured under various camera positions: (a) bird-eye view and noise object, (b) close-up, (c), side angle and contain other
food and noise object, and (d) side angle.
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performance. During the testing phase, all ASTFF-Nets achieved similar
computational performance. Each image took 77.8 ms to compute. The
ASTFF-Nets were slightly slower than ResNet50, which computed at
73.2 ms per food image. ASTFF-NetB3 achieved the best performance on
UEC Food-100, UEC Food-256, and ETH Food-101 with a model size of
41.5 M, which is 16.9 M smaller than the ResNet50 architecture, while
the speed observed during the testing phase is almost the same.

Compared to ResNet50, ASTFF-Nets have a larger model size due to
the inclusion of three networks: spatial feature extracted network,
temporal feature extracted network, and adaptive feature fusion
network, that extract spatial and temporal features. Further, the ASTFF-
NetB1 has the smallest model size of 38.4 M. The ASTFF-NetB4 is the
biggest among the ASTFF-Nets, with a model size 78.2 M.

5.5.6. The impact of training sizes and the quality of training samples
We conducted two experiments based on the proposed ASTFF-NetB1

architecture using the UEC Food-100 dataset to evaluate the effect of
training sample size and quality.

In the first experiment, we investigated the impact of training sizes
by randomly selecting 20 percent of the test set, which consisted of
2,873 food images. We applied this strategy consistently across all
subsequent experiments. Experimental results illustrated that using 80
% of the training set, which consisted of 11,488 images, resulted in the
highest accuracy of 87.39 %. Therefore, it can be concluded that a
large training set is essential for constructing an effective deep learning
model. The impact of the training sizes is shown in Table 12 and Fig. 20.

However, a decrease in the training set size by 5–10 % slightly im-
pacts test accuracy, resulting in a reduction of approximately 2 %.
Additionally, we plan to employ instance selection methods to curate a
robust training set (Branikas et al., 2019; Malekipirbazari et al., 2021)
before training the model.

In the second experiment, we observed that within the UEC Food-100
dataset, a significant proportion of misclassifications occurred in food

images containing multiple food items or a combination of food and
other objects. To assess the impact of dataset cleaning, we compared the
original UEC Food-100 dataset with a cleaned version. Initially, we
removed 2,567 unnecessary images to address the issue of food images
containing unrelated objects. As a result, the original dataset was
reduced from 14,361 to 11,785 food images. Example images of the
unrelated objects are shown in Fig. 21. Subsequently, we split the
remaining food images into training and test sets using a 75:25 ratio.
Finally, we trained ASTFF-Net models (B1-B4) on the 75 % training set

Fig. 19. Example blurred images of egg dishes presented in various types of cooked egg and decorations.

Table 11
The comparison of the computational cost and model size between the proposed
ASTFF-Nets and other architectures.

Method FLOPS Testing Time (ms/
image)

Model
Size

ResNet50 3.8G 73.2 24.6 M
ResNet50 + Conv1D-LSTM
(Phiphitphatphaisit & Surinta,
2021)

4.34G 77.2 38.3 M

ASTFF-NetB1 4.61G 77.4 38.4 M
ASTFF-NetB2 7.36G 77.8 41.5 M
ASTFF-NetB3 7.36G 77.8 41.5 M
ASTFF-NetB4 8.24G 78.2 78.2 M

Table 12
Recognition performance of the proposed ASTFF-NetB1 when training with
different sizes of training images.

Training Set Test Accuracy (%)

Percentage (%) No. of Training Images

80 11,488 87.39
75 10,770 86.10
70 10,052 85.25
65 9,334 83.65
60 8,616 83.25
55 7,898 82.30
50 7,180 81.40
45 6,462 78.80
40 5,744 78.30

Fig. 20. Illustrated the impact of the training images with the accuracy of the
proposed ASTFF-NetB1.
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and evaluated their performance on the test set.
After removing non-food and unrelated objects, Table 13 illustrates

that the recognition performance of ASTFF-Nets (B1-B3), when trained
on the cleaned data of the UEC Food-100 dataset, increased by
approximately 1 %. Additionally, we plan to apply food segmentation
techniques to the images before training the model, aiming further to
remove non-food and unrelated objects from the food images.

5.5.7. Comparison with the existing methods
Most existing food recognition methods focus on extracting spatial

features using CNN architectures. Şengür, Akbulut,& Budak (2019) used
two CNN architectures, VGG16 and AlexNet, to extract spatial features
four times from food images. Hence, four deep features were concate-
nated and then classified using a support vector machine (SVM) algo-
rithm. McAllister et al. (2018) extracted deep features using pre-trained
deep CNNmodels of ResNet152 and GoogLeNet. The deep features were
then trained again using machine learning algorithms, including naive
Bayes, SVM, artificial neural network (ANN), and random forest. These
two CNN-based techniques extract spatial features and train them with
machine learning algorithms.

Additionally, to achieve better accuracy performance, Tasci (2020)
fine-tuned multiple CNN models, including ResNet, GoogLeNet,
VGGNet, and InceptionV3. Hence, the voting rule-based probabilities
method was employed to determine the output class from the maximum
probability. Moreover, Mao et al. (2021) proposed a two-step recogni-
tion that includes food localization using a faster R-CNN method and
hierarchical classification using CNNs, called the visual aware hierarchy
method. Their method mainly recognizes food in specific locations and
contains various food categories in a single food image.

However, the proposed ASTFF-Net extracts robust deep features
from real-world food images using threemain networks: a spatial feature
extraction network, a temporal feature extraction network, and an
adaptive feature fusion network to extract spatial and temporal features.
In our proposed network, we employed only ResNet50 and Conv1D
architectures to extract spatial features. Concurrently, the LSTM
network was used to extract long sequence patterns from food images.
The network also responds to various challenges in food recognition,
such as numerous food dishes, identifying similar patterns between two

food categories, encountering objects appearing in one image, variations
in light conditions and perspectives, and noise occurring in the food
images.

5.5.8. Integrate the concept of relevance feedback into the ASTFF-Net
Relevance feedback, one of the adaptive learning strategies, is ach-

ieved in content-based image retrieval (CBIR) systems. In relevance
feedback, similarity measure algorithms are employed to measure
relevance based on user interaction. This approach improves retrieval
performance by dynamically updating queries and similarity measures
according to user preferences. However, relevance feedback sometimes
overlooks valuable historical data from other users, potentially resulting
in a loss of useful information (Salton & Buckley, 1990; Zhou & Huang,
2003; Doulamis & Doulamis, 2006).

Indeed, the user plays an essential role in the recognition process by
providing relevance feedback. When combining the relevance feedback
into the proposed ASTFF-Net, relevance feedback will involve the user
providing feedback on the accuracy of recognized food images. This
feedback is used to refine the model’s predictions over time and em-
powers the user to actively contribute to the system’s performance and
adaptability to their preferences.

For example, if the user identifies misclassified images, they can
provide feedback to the system, indicating which images were incor-
rectly classified. The system can then adjust its parameters or training
data accordingly to recognize similar images in the future. This iterative
process of user interaction and feedback enhances the recognition ca-
pabilities of ASTFF-Net. It makes the user an integral part of the system,
making it more effective in real-world applications.

6. Conclusions

In this research, an adaptive spatial–temporal feature fusion
network, namely ASTFF-Net, was invented to improve the food image
recognition performance. In other food recognition systems, a con-
volutional neural network (CNN) is usually proposed to extract the
spatial features from the food images. However, real-world food images
sometimes contain many noise and non-food objects, resulting in the
CNN extracting deep features containing information of the object
mentioned. Consequently, we proposed to use ResNet50 to extract the
spatial features and directly send them to the convolutional 1D
(Conv1D) block, followed by a long short-term memory (LSTM)
network. The LSTM network has gate operations designed to learn
sequence patterns from spatial information and allowwhich information
to keep or forget during the training scheme.

The ASTFF-Net architecture is divided into three parts as follows.
First, the spatial feature extraction network, we proposed to use the
state-of-the-art CNN model, namely ResNet50, to extract temporal fea-
tures. Then, the reduction operation was attached to the ResNet50 to
minimize the size of the feature maps before sending them to the

Fig. 21. Illustrated the non-food and unrelated objects that appear in the food images.

Table 13
Comparison of the recognition performance of ASTFF-Nets trained on the orig-
inal and cleaned data of the UEC Food-100 dataset.

Model Test Accuracy (%) on the UEC Food-100 Dataset

Original Data Cleaning Data

ASTFF-NetB1 85.70 86.22
ASTFF-NetB2 86.50 87.16
ASTFF-NetB3 91.35 91.94
ASTFF-NetB4 88.85 89.22
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Conv1D block. Second, the temporal feature extraction network, the
sequence output of the Conv1D block was assigned to the LSTM network
to create temporal features. Third, the spatial and temporal features
from the first and second parts were combined using concatenation
operation, then assigned to the Conv1D, called adaptive feature fusion
network. As with the ASTFF-Net, the softmax function was connected to
the ASTFF-Net as the recognition layer proposed to recognize real-world
food images. The ASTFF-Net architecture was proposed to address the
overfitting problems because we combined the global average pooling
(GAP) and dropout layers to the architecture. The most benefit of the
GAP layer is that the ASTFF-Net parameter was reduced. Additionally,
the unnecessary connections between layers were dropped using the
dropout layer.

In the experiments, we evaluated four ASTFF-Nets on four different
real-word food image datasets: Food11, UEC Food-100, UEC Food-256,
and ETH Food-101. The results show that the ASTFF-Nets achieved the
highest accuracy on 5-CV and the test set. Furthermore, we found that
the proposed ASTFF-NetB3 outperformed the existing methods on four
food image datasets.

In future research, we will apply the ASTFF-Nets to address the
challenge of unbalanced datasets (Aggarwal, Popescu, & Hudelot, 2020;
Özdemir, Polat, & Alhudhaif, 2021). Another direction will be applying
the instance selection methods (Branikas et al., 2019; Malekipirbazari
et al., 2021) to reduce the training set. It may reduce the training set by
more than 50%; the computational time will decrease while training the
ASTFF-Nets. We will consider segmentation techniques (Hafiz & Bhat,
2020; Ye et al., 2023) that can select the most relevant food region from
real-world food images. To compare the efficiency of the ASTFF-Net, we
will also apply it to other image recognition tasks, such as vehicle, plant
leaf disease, and land use. Finally, we will delve into relevance feedback
as a significant part of our research. The powerful adaptive learning -
strategy is crucial in content-based image retrieval (CBIR) systems. This
exploration could potentially enhance the efficiency and effectiveness of
CBIR systems, leading to improved user experiences and more accurate
image retrieval (Salton & Buckley, 1990; Zhou & Huang, 2003; Doula-
mis & Doulamis, 2006).
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