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Abstract. The field of pervasive computing focuses on using sensors to identify human
activities, a practice commonly known as Sensor-based Human Activity Recognition (S-
HAR). The objective of S-HAR is to automatically evaluate and understand real-time
events and their contextual information by utilizing sensor data. Activity identification
has various applications, including surveillance systems, medical monitoring systems,
and systems involving wearable intelligent devices like smartwatches. Contemporary HAR
algorithms are typically developed and evaluated using controlled conditions, which limits
their effectiveness in real-life scenarios where sensor data may be incomplete or corrupted
and human actions are spontaneous and unscripted. This study aims to identify human
behavior in real-world scenarios. To improve the efficiency of the action comprehension
structure, we propose a novel deep neural network architecture called ResNeXt, which
incorporates an aggregated residual transformation component. This component enables
the framework to categorize different human actions effectively and accurately. We eval-
uated the proposed network using the publicly available IDLab Real-World dataset for
human activity recognition. This dataset was utilized for training and testing the model,
employing a 5-fold cross-validation approach. Based on extensive investigations, we found
that ResNeXt achieved the highest accuracy rate of 98.32% and an F1-score of 87.90%.
Keywords: Deep neural network, Aggregated residual transformation module, Human
activity recognition, Deep learning, Smartwatch sensor

1. Introduction. Sensor-based Human Activity Recognition (S-HAR) uses sensors to
identify people’s actions and is an important area in ubiquitous computing. The key
goal is to detect and analyze human behavior patterns by processing sensor data from
smartwatches, smartphones, and wearables. These electronics collect data from diverse
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individuals, and machine learning can categorize the signals [1]. S-HAR with handheld
devices shows promise for healthcare by monitoring patients with various conditions. It
can track treatment adherence and prevent problematic behaviors [2]. Beyond health ap-
plications, S-HAR has uses in gaming [3], human-robot interaction, automation [4], and
sports [5, 6]. Deep learning has gained traction in many domains, including S-HAR [7, 8].
Prior research has used smartphone accelerometers effectively for S-HAR [9]. Modern
smartwatches contain diverse sensors to collect movement data, like accelerometers, gyro-
scopes, magnetometers, Wi-Fi, Bluetooth, microphones, light sensors, and cell broadcast
monitors. These provide insights into daily behaviors and movement analysis. Sensors
like accelerometers, gyroscopes, magnetometers, heart rate monitors, and GPS facilitate
context-aware identification, social communication, and coarse-grained positioning [10].
Motion sensors especially provide significant data to recognize and track physical move-
ments like walking, standing, and jogging. Most current S-HAR studies use sensor net-
works to capture interaction data, followed by algorithms to classify actions [11]. However,
despite promising results, most studies use controlled laboratory datasets. Real-world S-
HAR remains challenging for reliable categorization.
This research focuses on HAR using smartwatch sensors to collect data in real-world

scenarios. To achieve our objective, we have introduced a deep neural network called
ResNeXt, which incorporates an aggregated residual transformation module to classify
human actions accurately. The performance of the proposed network was evaluated using
the publicly available IDLab Real-World dataset, designed explicitly for HAR. We con-
ducted model training and testing using a 5-fold cross-validation approach. Experiments
showed that the ResNeXt model outperformed other models on critical metrics. It had
higher scores predicting correct outcomes and balancing precision versus recall. These
results demonstrate its superiority for this application.
The paper is organized as follows to provide a clear structure. Section 2 offers an

overview of relevant research. Section 3 delves into the details of the deep learning models
utilized in this study. Section 4 presents the experimental findings. Finally, Section 5
concludes the paper by summarizing the findings and proposing potential areas for further
research.

2. Related Works. Smartwatches have become integral to our daily activities, offering
enhanced computing power, versatile Internet connectivity, and a wide range of mobile
applications. Moreover, affordable smartwatches are now equipped with various sensors,
including accelerometers, GPS, and gyroscopes. These sensors enable human motion de-
tection, making smartwatches and other intelligent devices valuable tools for tracking and
analyzing physical activities [12, 13].
With the widespread availability of cognitive and computational capabilities in mod-

ern smartphones, researchers have begun exploring smartwatches as an alternative to
wearable sensor technology for HAR [14]. Smartphones offer diverse sensors, including
accelerometers and gyroscopes, and wireless connectivity features, making them valuable
for activity tracking in smart homes [15]. Additionally, smartwatches possess powerful
computing capabilities and are easy to use, making them a practical choice compared to
other sensors found in smart home environments. By integrating inertial sensors like gy-
roscopes and accelerometers, smartwatches can accurately capture motion data for HAR
purposes.
Recent studies have shown that the accelerometer data produced by publicly accessible

smartwatches is of research-grade quality [16]. This highlights the potential of using smart-
watches for data collection without the need for additional devices [17]. For instance,
Michelin et al. [18] utilized an Inertia Measurement Unit (IMU) to capture participants’
tri-axial accelerometer and gyroscope data. They developed a 1D convolutional neural
network to detect facial touching gestures. In addition to their conventional applications,
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IMUs have been used by researchers to identify specific facial activities, such as ingestion
[19, 20] and tobacco consumption [21, 22].

HAR methods are primarily developed and evaluated using data collected in controlled
environments. However, this approach restricts our understanding of the effectiveness of
these methods in real-life scenarios, where sensor data can be incomplete and distorted,
and human behavior may be unstructured. As a result, exploring and assessing HAR
methods in more realistic settings is necessary to understand their efficacy in practical
applications comprehensively.

3. Methodology. In this study, we utilize an S-HAR process flow consisting of five main
procedures: data acquisition, data pre-processing, data segmentation, model architecture,
and model fine-tuning. These procedures are illustrated in Figure 1, visually representing
the workflow.

Figure 1. The HAR workflow based on smartwatch sensors used in this work

3.1. Pre-processing and segmentation of data. The pre-processing of the raw sensor
data involved two essential steps: noise reduction and data standardization. To reduce
noise in the signal, an average smoothing filter was applied to all three dimensions of
the accelerometer sensor. After noise reduction, the sensor data was normalized to ensure
all values fell within a comparable range. This standardization helps training models
by making the data more consistent and improving the convergence rate of gradient
descents. Finally, the normalized data was segmented using fixed-width sliding windows of
12 seconds, with a 50% overlap between consecutive windows. This segmentation process
is illustrated in Figure 2.

3.2. The proposed deep neural network with hyperparameters tuning. The
present study introduces ResNeXt, a deep neural network that incorporates aggregat-
ed residual transformations [23]. Unlike InceptionNet [24], which combines kernel feature
maps of different sizes, ResNeXt combines them through addition. This approach reduces
the number of parameters in the model, making it more suitable for edge and low-latency
applications. Figure 3 visually represents the ResNeXt architecture and its components.

The ResNeXt model consists of four distinct components, each utilizing convolutional
kernels of different sizes. One of these components is the MultiKernel (MK) component,
which incorporates kernels of sizes 1× 3, 1× 5, and 1× 7. Before applying these kernels,
1× 1 convolutions are used to reduce the model’s complexity and number of parameters.
The details of the MK component are depicted in Figure 4.
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Figure 2. Data segmentation using a fixed-width sliding window

Figure 3. The proposed ResNeXt model

The model simplified the feature maps by using Global Average Pooling (GAP). It
averaged the values in each map to produce a flattened 1D vector summary. Fully con-
nected layers transformed this into probability estimates via Softmax. These scores reflect
confidence in predicted classes. Cross-entropy loss was the error function, as is common
in classification models. It quantifies inaccuracy between targets and predictions.
Hyperparameters are used in deep learning to control model training. This model em-

ploys several key hyperparameters: epochs, batch size, learning rate, optimization algo-
rithm, and loss function (Table 1). A sample size of 128 and 200 epochs was set to de-
termine suitable hyperparameters. Early stopping after 30 epochs without validation loss
improvement concluded training. The initial learning rate was 0.001, reduced by 75% if
validation accuracy stalled for seven epochs. The Adam optimizer (β1 = 0.90, β1 = 0.999,
ϵ = 1×108) minimized errors. It uses categorical cross-entropy loss, improving this task’s
mean squared error and classification error.
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Figure 4. The structure of an MK module

Table 1. The summary of hyperparameters for the ResNeXt network used
in this work

Stage Hyperparameters Values

Convolutional Block
Conv1D

Kernel Size 5
Filters 64

Activation ReLU
Max Pooling 2

Multi-Kernel Block × 3

Branch 1-1

Conv1D
Kernel Size 1

Filters 16

Conv1D
Kernel Size 3

Filters 16
Branch 1-2

Conv1D
Kernel Size 1

Filters 16

Conv1D
Kernel Size 5

Filters 16
Branch 1-3

Conv1D
Kernel Size 1

Filters 16

Conv1D
Kernel Size 7

Filters 16
Branch 1

Conv1D
Kernel Size 1

Stride 1
Filters 64

Branch 2

Conv1D
Kernel Size 1

Stride 1
Filters 64

Classification Block
Global Average Pooling −

Flatten −
Dense 128

Training

Loss Function Cross-entropy
Optimizer Adam
Batch Size 128

Number of Epochs 200
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4. Experimental Setting and Findings. This section provides an overview of the ex-
perimental setup. It presents the results of evaluating five baseline deep learning models
and the proposed ResNeXt model for HAR in real-world scenarios. The study consid-
ered five fundamental deep learning models: Convolutional Neural Network (CNN), Long
Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), Gated Recurrent Unit
(GRU), and Bidirectional GRU (BiGRU).

4.1. IDLab Real-World dataset. The IDLab Real-World dataset [25] is a publicly
available standard dataset widely used for HAR research. This dataset consists of sen-
sor data collected from wearable devices, explicitly focusing on acceleration data with a
sampling rate of 32 Hz. The data was gathered from a diverse group of eighteen subjects,
ranging in age from 22 to 45, including thirteen men and five women. Participants were
given the Empatica E4 wristband to wear. The E4 is a device that continuously gath-
ers real-time data as participants live their daily lives. They were also asked to install
a program that pairs with the wristband on their mobile phones. This allowed people
to follow their routines and activities without restrictions while the wristband collected
background data.
During the data-gathering process, participants were instructed to classify everyday

actions in their daily lives. These actions included sitting while using a laptop, standing
still upright, walking, jogging, and biking. Participants were also free to categorize addi-
tional tasks such as cooking, grocery shopping, transportation, or any personal hobbies
they wanted to include in their actions.
The present study focused on the first five actions listed for several reasons. These

actions were chosen because there was a substantial amount of available data related to
them. They have been frequently studied in previous research, and we were confident in
our ability to detect them using a single accelerometer worn on the wrist.

4.2. Experimental setting. All experiments in this research were conducted using the
Google Colab Pro platform with a Tesla V100 GPU. The experiments were implemented in
Python, utilizing various libraries, including Python 3.6.9, TensorFlow 2.2.0, Keras 2.3.1,
Scikit-Learn, Numpy 1.18.5, and Pandas 1.0.5. The study evaluated the effectiveness of
deep learning algorithms in HAR using smartwatch sensors from the IDLab Real-World
dataset.

4.3. Experimental results. Table 2 presents the evaluation results of deep learning
models using wearable sensor data for effectiveness identification. The findings of this
study reveal that the suggested ResNeXt model displayed exceptional performance, achiev-
ing the highest accuracy among all models when applied to smartwatch sensor data. The
proposed approach achieved an impressive accuracy of 98.32% and the highest F1-score
of 87.90%.

Table 2. The identification effectiveness of the proposed ResNeXt model
and five baseline models using smartwatch sensors for HAR

Model Parameter
Recognition performance

Accuracy Loss F1-score

CNN 796,133 97.44%(±0.118%) 0.15(±0.004) 76.77%(±0.855%)

LSTM 183,805 96.31%(±1.291%) 0.13(±0.042) 72.23%(±5.873%)

BiLSTM 328,405 97.00%(±0.433%) 0.11(±0.005) 77.04%(±1.447%)

GRU 124,005 97.44%(±0.037%) 0.09(±0.005) 76.21%(±1.337%)

BiGRU 248,005 97.64%(±0.082%) 0.08(±0.001) 79.99%(±2.402%)

ResNeXt 23,783 98.32%(±0.044%) 0.07(±0.003) 87.90%(±0.875%)
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The findings in Table 2 demonstrate that the suggested ResNeXt model outperforms
the baseline model, showcasing its superior performance. Notably, the ResNeXt model
achieves this impressive outcome while maintaining a relatively low number of parameters,
as depicted in Figure 5.

Figure 5. Comparative results of model parameters of each DL model
used in this work

5. Conclusion and Future Works. This study focuses on utilizing deep learning mod-
els for HAR using smartwatches in real-world scenarios. We collected acceleration data
from smartwatch sensors available in the IDLab Real-World dataset, which provides a
wide range of sensor data capturing diverse human behaviors in real-life settings. To
achieve our study’s objective, we propose a deep neural network, ResNeXt, designed to
enhance comprehension effectiveness. We compared ResNeXt with other baseline deep
learning models, including CNN, LSTM, BiLSTM, GRU, and BiGRU. The experimental
results demonstrate that the ResNeXt model outperforms the other models, achieving the
highest accuracies and F1-scores. Specifically, when using acceleration data from smart-
watch sensors, ResNeXt achieved an impressive accuracy of 98.32% and an F1-score of
87.90%.

In future endeavors, we plan to explore applying deep learning models, such as ResNet,
InceptionTime, and Temporal Transformer, to improve human activity recognition in
real-world settings. Additionally, we recognize the potential of data augmentation as a
valuable technique to enhance model performance, mainly when dealing with imbalanced
datasets. By implementing this methodology, we aim to address the issue above and
further improve the accuracy and effectiveness of our models.
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