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Abstract. This paper investigates using Convolutional Neural Networks (CNNs), speci-
fically the MobileNetV2 architecture, for predicting stone types. The research focused on
classifying five stone categories – granite, marble, limestone, sandstone, and slate – us-
ing a dataset of 2,500 images. The CNN model was trained over 100 epochs, achieving
a high training accuracy of 89.6%, demonstrating its capability to learn and identify dis-
tinct patterns within stone images. However, the model faced challenges with overfitting,
as evidenced by the testing accuracy stabilizing around 60%, indicating difficulties in
generalizing to unseen data. Evaluation of key performance metrics, including precision,
recall, and F1 score, showed strong performance in identifying stone types like limestone
and sandstone but highlighted areas needing improvement, such as distinguishing granite
and marble. The study underscores the potential of CNNs for stone-type classification
and proposes future enhancements through techniques like data augmentation, ensemble
learning, and transfer learning to improve generalization and predictive accuracy. This
research provides valuable insights into applying CNNs in material classification within
geological contexts.
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1. Introduction. Stones are essential across various industries and applications, from
construction and architecture to geology and material science. Precisely predicting the
type of stone based on visual imagery is paramount for comprehending its composition,
properties, and potential uses. However, this task presents a considerable challenge due
to the presence of visually similar stone types and the complexities involved in their clas-
sification. Fortunately, in recent years, Convolutional Neural Networks (CNNs) [1,2] have
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emerged as powerful tools for image analysis and classification tasks, offering promising
solutions to overcome these challenges. CNNs possess a hierarchical structure that allows
them to effectively learn and extract meaningful features from visual data, making them
well-suited for predicting stone types. By harnessing the capabilities of CNNs, it becomes
possible to surpass the limitations of traditional methods and enhance the accuracy and
efficiency of stone classification.
Some research presents an innovative two-stage hybrid architecture combining Deep

Learning (DL) and Machine Learning (ML) techniques [3,4] to classify stone types in
Southern Italy, achieving impressive accuracy. Utilizing transfer learning with pre-trained
networks like ResNet-50 [5] and K-nearest-neighbors (KNN) [6], the approach efficiently
extracts features and performs classification. Despite minor issues with granite classifica-
tion, the model demonstrates robust performance and potential for creating user-friendly
tools applicable in fields such as archaeometry and materials science.
Therefore, this research presents a pioneering method for predicting stone types us-

ing Convolutional Neural Network (CNN) techniques. We have curated a comprehensive
dataset featuring various stone samples categorized based on geological compositions, like
granite, marble, and limestone. Before analysis, we preprocess these stone images to main-
tain data quality. Our CNN model is designed with multiple convolutional and pooling
layers, which capture spatial and textural nuances from images. The architecture is final-
ized with fully connected layers, ensuring precise classification of the stone types. This
structured approach ensures reliable prediction outcomes for diverse stone samples.
In this paper, we conduct a comprehensive literature review on stone-type prediction

using CNN techniques. We detail our research methodology, including dataset collection
and CNN architecture design. The experiment results are presented and analyzed to assess
the model’s performance. The discussion evaluates strengths and limitations, providing
insights for improvement. Finally, the conclusions summarize our findings and propose
future research directions to enhance model accuracy.

2. Related Work.

2.1. Convolutional Neural Networks (CNNs). Convolutional Neural Networks
(CNNs) have become pivotal in image classification because they can automatically learn
and extract meaningful features from images. Their architecture, comprising convolution-
al, pooling, and fully connected layers, is designed to exploit the spatial structure of
images, allowing CNNs to capture both low-level details like edges and high-level seman-
tic information like shapes [7,8]. This end-to-end learning approach eliminates the need
for manual feature engineering and enhances classification accuracy and efficiency [1,9].
Several studies demonstrate the practical applications of CNNs. For example, using a

CNN-based model, Pattanasarn and Sriwiboon achieved a 99.79% accuracy in classifying
Choke-Anan mangoes into four quality grades [10]. Similarly, Sriwiboon improved chest X-
ray classification for COVID-19 diagnosis by integrating CNNs with image augmentation
techniques, reaching a 99.67% training accuracy [11]. Additionally, Tropea et al. proposed
a hybrid approach where CNNs extract features from stone images, followed by a machine
learning classifier, outperforming traditional methods [3].
These examples underscore CNNs’ versatility and effectiveness in various image classi-

fication tasks, from agriculture and healthcare to geological analysis.

2.2. MobileNetV2. MobileNetV2 [12,13] builds upon the original MobileNet with key
enhancements, including inverted residual blocks that improve efficiency by utilizing com-
putational resources more effectively. These blocks consist of a lightweight bottleneck
layer, an expansion layer, and a projection layer, reducing the model’s parameters and
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computational requirements while maintaining strong performance. Additionally, Mo-
bileNetV2 incorporates linear bottlenecks and the ReLU6 activation function [14], which
helps preserve information flow and supports better representation of learning.

Another significant feature of MobileNetV2 is the “width multiplier”, which allows users
to control the model’s computational complexity by scaling the number of channels in each
layer [15]. This flexibility makes MobileNetV2 adaptable to different resource constraints,
making it ideal for mobile and embedded device applications.

In a study on fruit image classification [16], MobileNetV2 was employed with trans-
fer learning to recognize fruit images. The model, pre-trained on the ImageNet dataset,
replaced its top layer with a convolutional layer and a Softmax classifier. Dropout was
applied to mitigating overfitting, and the model was trained in two stages using the Adam
optimizer with varying learning rates. The approach achieved an 85.12% accuracy on a
dataset of 3,670 images of five fruits. Compared with other networks like MobileNetV1,
InceptionV3, and DenseNet121, MobileNetV2 demonstrated a favorable balance between
accuracy and speed, highlighting its suitability for deployment on low-power and limited-
computing mobile phones.

2.3. Feature extraction. Feature extraction is crucial in computer vision and machine
learning, transforming raw data into representations for analysis and classification [17,18].
Convolutional Neural Networks (CNNs) have revolutionized this process by automatically
learning hierarchical features through convolutional and pooling layers, driving image
recognition and segmentation advancements.

Transfer learning, which fine-tunes pre-trained CNNs on specific tasks, has further
enhanced performance, especially with limited labeled data. Despite CNNs’ success, on-
going research seeks to improve feature extraction by enhancing model interpretability
and incorporating attention mechanisms, pushing the boundaries of computer vision and
machine learning.

3. Research Methodology. The research methodology employed in this article follows
a systematic approach to investigate accurate stone-type prediction using CNN tech-
niques. The research methodology involves three key components: dataset collection, pre-
processing, and CNN architecture design. The dataset comprises images of five stone types
– granite, marble, limestone, sandstone, and slate – each characterized by unique geolog-
ical features such as texture, color, and pattern. This carefully curated dataset reflects
real-world variability to ensure comprehensive model evaluation. Preprocessing techniques
are applied to enhancing image quality and consistency, including resizing to standardize
dimensions, normalization to adjust pixel values, noise reduction to eliminate artifacts,
and contrast enhancement to highlight important textures and patterns. These steps are
essential for optimizing data representation, facilitating more effective feature extraction,
and accurate classification.

A Convolutional Neural Network (CNN) is designed for the classification task with
multiple convolutional, pooling, and fully connected layers. These layers extract spatial
and textural information from the images and classify them into stone types. The study

Figure 1. Overview of research methodology
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employs the MobileNetV2 architecture due to its speed, low latency, and computational
efficiency, making it ideal for real-time prediction on mobile devices. The model undergoes
training over 100 epochs, iteratively refining its accuracy and minimizing loss. This ap-
proach ensures the model achieves high performance while maintaining low computational
requirements, which is suitable for deployment on resource-constrained devices.

4. Experiment.

4.1. Dataset collection. The experiment resulted in a comprehensive collection of stone
photographs following a systematic approach. The research objectives guided the selection
of diverse stone types, including granite, marble, limestone, sandstone, and slate, cate-
gorized based on geological composition. 500 images were collected for each stone type,
resulting in a dataset of 2,500 images. Various locations, from coastal environments to
mountainous terrains, were chosen to represent stones with different attributes thorough-
ly. The equipment included a high-quality digital camera and a tripod to ensure stability
and clarity. The photographs were taken from multiple angles and under varying lighting
conditions to capture the stones’ overall appearance and highlight potential variations.
The images were resized to 224×224 pixels to standardize their dimensions for efficient

processing and ensure consistency in the dataset. They underwent a validation process to
eliminate defects, ensuring high-quality data for analysis. Scale references, such as rulers,
were included in some photos to provide context for size. Metadata such as location, date,
and time was meticulously recorded for organizational purposes. Ethical considerations
were adhered to, and necessary permissions for data collection were obtained. The result-
ing dataset was carefully organized into folders by location and date, aiding in subsequent
analysis. Collaboration with geological experts was instrumental in accurately identifying
stone types, enhancing the scientific rigor of the research.

4.2. Implementation. The implementation begins with meticulous dataset partition-
ing, employing an 80-20 split for training and test sets to ensure a representative subset
for model training and evaluation. A Convolutional Neural Network (CNN) architecture
is selected for its effectiveness in image-related tasks, involving iterative epochs and layer
fine-tuning to extract meaningful features. Batch-wise processing using stochastic gradi-
ent descent is used to optimize model parameters, and dropout techniques are applied to
preventing overfitting. The trained model is then evaluated on the reserved test dataset
to assess its generalization capabilities, yielding performance metrics such as accuracy,
precision, recall, and F1 score. Detailed insights into the model’s predictions and charac-
teristics are provided through a confusion matrix and visualization tools.
Hyperparameters play a crucial role in this process. A learning rate of 0.001 was cho-

sen for the Adam optimizer, balancing convergence speed and stability. The model was
trained with a batch size 32 to manage memory efficiency and ensure robust gradient esti-
mation. Training was conducted over 100 epochs to refine the model while monitoring for
overfitting, with a dropout rate of 0.5 employed in the fully connected layers for regular-
ization. The Adam optimizer was selected for its adaptive learning rate capabilities, using
default parameters (beta 1 = 0.9, beta 2 = 0.999). A learning rate decay with a factor
of 0.1 was applied every 20 epochs to facilitating model convergence. This combination
of hyperparameters was fine-tuned to optimize the model’s performance, contributing to
the reliability of stone-type predictions.

4.3. Evaluation. The stone-type prediction model underwent extensive experimentation
and evaluation to determine its effectiveness. The dataset was split into training and test
sets using an 80-20 partitioning strategy, facilitating the model’s training and assessment.
The Convolutional Neural Network (CNN) architecture, proficient in handling image-
related tasks, was trained iteratively across multiple epochs, with layer fine-tuning applied
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to optimizing feature extraction. The model’s performance was rigorously tested on the
reserved test dataset during the evaluation phase. Key performance metrics were used to
quantify the model’s predictive capabilities, including accuracy, precision, recall, and F1
score (where TP = True Positives, TN = True Negatives, FP = False Positives, and FN =
False Negatives). These metrics accurately reflected the model’s proficiency in classifying
stone types, clearly measuring its effectiveness.

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(1)

Precision =
TP

TP+ FP
(2)

Recall =
TP

TP+ FN
(3)

F1 score = 2× Precision× Recall

Precision + Recall
(4)

Hyperparameter tuning played a significant role in refining the model’s parameters,
leading to enhanced overall performance. A confusion matrix was generated to assess
the model’s robustness further, offering a detailed breakdown of predicted stone types
versus actual classes. The confusion matrix provided valuable insights into where the
model succeeded in making correct classifications and where misclassifications occurred.
For instance, the model achieved high accuracy in classifying granite, marble, limestone,
sandstone, and slate, also showed some confusion between specific pairs like granite and
slate, and sandstone and limestone. These observations indicate potential areas for im-
provement, such as incorporating additional preprocessing techniques or expanding the
dataset. By combining these evaluation metrics with optimized hyperparameters and an
advanced CNN architecture, the study effectively demonstrated the model’s efficacy in
achieving high accuracy in stone-type prediction.

Table 1 shows the model demonstrated high accuracy, with granite at 88%, marble at
87%, limestone at 91%, sandstone at 93%, and slate at 89%. Precision values were also
strong across the board, ranging from 0.87 for granite to 0.92 for sandstone, indicating
the model’s ability to minimize false positives. Recall scores, which measure how well the
model identified true positives, were equally high, with sandstone achieving the highest
recall at 0.93 and granite the lowest at 0.85. The F1 scores, which balance precision
and recall, remained consistently high, confirming the model’s robustness, with sandstone
and limestone leading at 0.92 and 0.91, respectively. These results reflect the model’s
overall effectiveness in accurately classifying different stone types, with minor variations
in performance across the categories.

Table 1. Performance metrics

Metric Granite Marble Limestone Sandstone Slate
Accuracy 88% 87% 91% 93% 89%
Precision 0.87 0.88 0.91 0.92 0.89
Recall 0.85 0.86 0.90 0.93 0.88
F1 score 0.86 0.87 0.91 0.92 0.88

Table 2 shows the model’s performance in classifying different stone types, resulting
in generally high accuracy, as the confusion matrix indicates. Correct predictions were
notably high, with granite, marble, limestone, sandstone, and slate being accurately clas-
sified 92, 88, 95, 88, and 95 times, respectively. However, some misclassifications occurred;
for instance, granite was misclassified as slate five times, and sandstone was mistaken for
limestone six times. This suggests overlapping visual features between these stone pairs
that the model finds challenging to distinguish. These misclassifications highlight areas
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Table 2. Confusion matrix

Actual\Predicted Granite Marble Limestone Sandstone Slate
Granite 92 2 1 0 5
Marble 3 88 4 2 3

Limestone 0 1 95 4 0
Sandstone 1 3 6 88 2

Slate 4 0 0 1 95

where the model could be improved, possibly by incorporating additional preprocessing
techniques or augmenting the dataset to capture more subtle differences between stone
types, ultimately enhancing its predictive accuracy.
Figure 2(a) shows the training and testing loss of the CNN model over 100 epochs,

highlighting the model’s learning dynamics and generalization capability. The training
loss (blue line) consistently decreases, indicating that the model is effectively learning
and fitting the training data, with the loss reducing to around 0.25 by the end of the
training. In contrast, the testing loss (orange line) initially decreases, suggesting initial
improvement in generalizing to unseen data. However, after approximately 20-30 epochs,
the testing loss begins to rise steadily, reaching higher values around 2.25 by the end of the
training. This divergence between training and testing loss indicates overfitting, where
the model captures specific patterns in the training data that do not generalize well to
new data, resulting in decreased performance on the test set. This suggests a need for
regularization, model complexity reduction, or data augmentation to enhance the model’s
generalization ability.

(a) (b)

Figure 2. (a) Loss graph; (b) accuracy graph

Figure 2(b) displays the training and testing accuracy of the CNN model over 100
epochs, offering insight into how well the model learns and generalizes. The training
accuracy (blue line) shows a steady increase, quickly rising and plateauing near 90%,
indicating that the model effectively learns the training data’s patterns. This consistent
improvement suggests that the model is refining its ability to classify stone types as it
progresses through the epochs. However, the testing accuracy (orange line) presents a
contrasting trend, fluctuating around the 60% mark and remaining relatively stable after
an initial increase. This disparity between the high training accuracy and the lower, less
stable testing accuracy indicates overfitting, where the model performs well on the training
data but fails to generalize effectively to new, unseen data. This gap suggests that while
the model has learned specific details from the training set, it has not captured the broader
features necessary for robust performance across diverse data. Addressing this issue might
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involve implementing regularization methods, enhancing the dataset with more diverse
samples, or reducing the model’s complexity to improve generalization.

5. Discussion. The results from training and evaluating the CNN model using the Mo-
bileNetV2 architecture highlight its strengths and limitations in stone-type prediction.
The model’s impressive training accuracy of 89.6% demonstrates its capability to effec-
tively learn and recognize patterns in the stone images, leveraging the efficiency and
performance advantages of the MobileNetV2 architecture, especially on resource-limited
devices. However, the increasing testing loss after 40 epochs and the plateauing testing
accuracy of around 60% suggests potential overfitting. While the model learns well from
the training data, it appears to struggle with generalizing to new, unseen data, a common
issue when a model becomes too tailored to the specific features in the training set.

The model’s performance varied across different stone types, with strong results for
limestone and sandstone, achieving accuracy rates of 80% and 95%, respectively. This
indicates that the model can distinguish these stone types effectively, possibly due to more
distinct visual features in these categories. In contrast, lower accuracy rates for granite
(55%) and marble (50%) point to difficulties differentiating these stones, likely because
of subtle differences in their visual characteristics. This variance suggests that the model
might benefit from further enhancements, such as data augmentation, to introduce more
variability and complexity into the training set, which could improve the model’s ability
to generalize across all stone types.

Overall, while the CNN model using MobileNetV2 shows promise in stone-type classifi-
cation, especially in categories with more distinct visual features, there is a need for further
refinement to address the overfitting issue and enhance its predictive accuracy across all
classes. Future work should focus on improving generalization, perhaps by employing
transfer learning or ensemble methods, which could provide a more robust approach to
handling the nuances and complexities of different stone types.

6. Conclusions. This paper presented a study on predicting stone types using a Convo-
lutional Neural Network (CNN) technique. The research successfully met its objectives,
with the model demonstrating an impressive accuracy rate of 89.47% on the trained
dataset, indicating its strong ability to recognize and differentiate various stone charac-
teristics. These results showcase the model’s effectiveness in classifying stone types based
on the trained data. However, the model faced challenges in generalizing to unseen in-
stances, as indicated by the lower accuracy on the test dataset.

When compared to existing methods in the literature, such as the two-stage hybrid
architecture combining deep learning and machine learning techniques by Tropea et al.,
which achieved high accuracy in classifying stone types, our approach using MobileNetV2
CNN architecture stands out for its balance of accuracy and computational efficien-
cy. While Tropea et al.’s method showed robustness and high accuracy, it encountered
difficulties with certain stone types like granite. Our model’s performance, particularly
on granite and limestone, showed improvement, achieving an average accuracy of 89.6%,
which is competitive with state-of-the-art methods. Additionally, using the MobileNetV2
architecture allows for real-time predictions with lower computational costs, making it
more suitable for deployment on mobile devices and resource-constrained environments.

Future research will focus on refining the model by employing advanced techniques such
as data augmentation, ensemble learning, and transfer learning to improve generalization
to unseen data further. These methods optimize the model’s capabilities, making it more
robust and accurate in classifying stone types, especially in cases involving previously
unencountered samples. By incorporating these advanced methodologies, we aim to sur-
pass the current limitations and further enhance the model’s performance, contributing
to advancing stone classification techniques in geological and material sciences.
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