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ABSTRACT This research work introduces two novel loss functions, pattern-loss (POL) and label
similarity-based instance modeling (LSIM), for improving the performance of multi-label classification
using artificial neural network-based techniques. These loss functions incorporate additional optimization
constraints based on the distribution of multi-label class patterns and the similarity of data instances.
By integrating these patterns during the network training process, the trained model is tuned to align with
the existing patterns in the training data. The proposed approach decomposes the loss function into two
components: the cross entropy loss and the pattern loss derived from the distribution of class-label patterns.
Experimental evaluations were conducted on eight standard datasets, comparing the proposed methods with
three existing techniques.The results demonstrate the effectiveness of the proposed approach, with POL and
LSIM consistently achieving superior accuracy performance compared to the benchmark methods.

INDEX TERMS Multi-label classification, label correlation, label-specific features, deep neural network,

loss functions.

I. INTRODUCTION

Multi-label classification (MLC) is one of the supervised
learning methods that explicitly classifies data instances into
a set of mutual classes (or multiple labels) [1], [2]. MLC
has been applied to problems domains, such as document
classification [3], [4], medical diagnosis [5], recommendation
systems [6], product review classification [7], categorising
a video clips into several categories [8], [9], classifying
the patient diseases [10], [11], [12] and classifying human
emotions from audio [13], [14]. Boutell et al. [15] introduced
a seminal work to classify multi-objects within individual
image scenes by addressing the problem as an MLC task, and
has inspired much further work. Prior, includes MLC applied
to phenotypic data domains, including Clare and King [16].
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The approaches to solve MLC problems can broadly
be categorized into three groups [17]: adaptation methods,
problem transformation methods, and ensemble methods.
Adaptation methods (AM) inherently adapts the conventional
machine learning algorithms that tackle multi-class classi-
fication problems to MLC. Quinlan’s C4.5 decision tree
algorithm was adapted to tackle multi-label classification
tasks, called ML-C4.5 [16]. The K-Nearest Neighbors (KNN)
technique was modified, known as ML-KNN [18]. Problem
transformation methods (PTM) on the other hand, convert
the MLC problems to one or more single-label learning
problem(s), such that conventional classification algorithm
can be applied to solve the problem directly. Binary relevance
(BR) [19], classifier chains (CC) [20], label power-set
(LP) are the examples. Ensemble methods (EM) were
introduced by combining PTM methods aimed to deliberately
improve the performance of the (class) classification problem
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(in order to solve the MLC task). RAKEL [21], EPS [22], and
ECC [23] are some of the examples from the ensemble family.

The current challenges of MLC have focused mainly on
improving classification efficiency, where research has been
carried out to cope with the specific issues underlying the
generalization of the classification task.

Feature engineering techniques [24], [25] can generally
be divided into feature selection (FS), feature transformation
(FT), feature reconstruction (FR). FS preserves a subset of
features for the data and dismisses the others. FT and FR
constructs a set of features from the original feature sets [26].
FT can be exploited by implementing, for example, deep
learning algorithms that can encode data features and produce
corresponding latent feature sets used in the classification
processes [27], [28]. Cheng et al. [28] identified a significant
drawback of applying a conventional auto-encoder scheme
for generating latent features and proposed an extreme
learning-based method to generate and extract the correlation
of label-to-label and feature-to-feature in data used in the
classification process.

Label correlation (LC) technique has demonstrated effi-
cacy to improve the performance of MLC [29], [30], [31].
The technique examines the basis correlation of the feature-
to-labels in the data by quantifying a degree of their
dependency. Zhang [32] proposed the LIFT method, which
applied a K -means clustering algorithm to group the positive
and negative instances of each label in the data. Then,
the characteristics of the data were extracted through the
distance measurement between the data instances and the
cluster centers of each label. Subsequently, the relationship
between the labels was derived by generating additional
attributes of the data. The LIFT method achieved high
performance on 17 benchmark datasets compared to other
multi-label learning algorithms. Huang et al. [33] proposed a
technique to learn the dispersion of label attributes, including
common attributes. They applied double-label correlation
to differentiate labels for each category. Luaces et al. [34]
investigated conditional dependency between labels, using its
measure as a basis for synthetic dataset generation and MLC
model evaluations.

Several studies have shown that neural networks and
deep neural networks can improve the MLC classification
performance. Zhang et al. [35] proposed a method for using
deep neural networks (DNNs) to classify multi-label data,
namely GroupNet. The technique used the conventional PTM
family to transform the problem (using BR and LP) to a
multi-class classification task. Then, the classification was
carried out using a convolutional neural network (CNN)
[36]. Transforming a small number of label classes can
make the problem more applicable in solving it as multi-
class classification. However, it can become an intractable
problem using the transformation method when datasets
contain a large number of label classes. Recent research
has demonstrated success in applying deep learning-based
approaches for solving MLC problems [37], [38], [39].
Some of these techniques rely on the autoencoders which
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allow an unsupervised learning process to carry out for
generating encoded features for the classification [28], [40].
Lipton et al. [41] implemented a recurrent neural network
(RNN) to classify diagnostic data with 128 diagnostic labels.
A sequence-to-sequence based approach was essentially
applied to solve this classification problem. The input
features were mapped into dense time series set and the output
labels were encoded into multivariate binary classes [42],
[43]. Then, these input sequences and their corresponding
output labels were fed to the RNN to generate a model.

A. RESEARCH CONTRIBUTIONS

This research proposes a classification approach for neural
networks with multi-label data. It is inspired by the LIFT
method proposed by Zhang [32]. The two proposed methods
classify and predict data labels by integrating label distribu-
tion and label patterns information from the origin dataset.
Label patterns represent the relationships between groups
of labels that appear in the data. These labels help identify
shared patterns among different data sets. Typically, a group
of labels exhibits relationships between individual labels. For
example, when labels A and B co-occur, label C tends to
appear as well, indicating consistent meaning. Conversely,
some labels may be inversely related. If labels A and B
are present, label C must not co-occur. Researchers have
focused on identifying and utilizing label patterns, which
play a crucial role in multi-label classification. Leveraging
label patterns can enhance the accuracy and rationality of
classification results. These label patterns are assembled
during the training procedure, and used in the loss function
to guide the optimization of network parameters in order
to obtain a generalized model. Within the loss function, a
pattern-loss penalty guides the reward (negative penalties)
of class label predictions that are anticipated to predict the
known label patterns. The training process’s loss function
is divided into two components, i.e., (i) cross entropy loss
and (i) associated loss (pattern-loss) obtained from the
information of the class-label patterns.

In this article, we propose and report on two pattern-
losses: (i) Patterns Of the Label (POL) is introduced as
the pattern loss to constrain the predicted classes of the
data instance with respect to the existing patterns of labels
in the training data. (ii) Label SIM-ilarity (LSIM) is also
implemented as pattern-loss deriving the predicted class
of a data instance towards its similar data instances. The
classification performance of POL and LSIM are compared
with (state-of-the-art) benchmarks in neural network-based
techniques.

The key contributions of this article are:

« Two novel loss functions — POL and LSIM - for neural
network model training on multi-label classification
(MLC) problems, as inspired by Zhang [32], see
Section II1.

o A thorough evaluation of classification performance of
POL, LSIM and three state-of-art MLC neural network
techniques (BP-MLL, ML-HARAM, ANN). Measured
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over eight datasets from the MULAN dataset series in
Section IV, as modelled after [44].

Outline. Section II) explains neural networks for multi-
label classification. Section III also includes the MULAN
dataset analyses. Section IV for experiments and results.
Statistical significance testing of results in Section V,
followed by discussion and conclusion.

Il. NEURAL NETWORKS FOR MULTI-LABEL
CLASSIFICATION
A. PRELIMINARIES OF NEURAL NETWORKS
Model learning from data using a neural network concept
for multi-label classification can be formally expressed as
follows: Let X be a space of data instances comprising »n data
instances x, i.e. Vx € X, x = {x1,...xg} (where d is the
number of instance features) a set of d-dimensional features,
and a set p a possible label space ¥ = {yi,...yp}, ie.
y = {y1, ..ym} where y = {0, 1} and m denotes the dimension
of the labels y associated with x. We assume that a feasible
solution for the neural network is a set of training networks
N = ny, ..., ng. The objective is to find an optimal network
configuration (weights) that produces predicted outcomes
Y’ that closely match the true values of Y. To construct a
generalized model for the task, the network takes the input
x through a set of hidden layers H = {h; (.),..., hr (1)}
where L is the number of the hidden layer in the network.
Each hidden layer contains a set of adjustable and tractable
parameters w and b. An additional final layer of the network
is augmented by an activation function(s) that transforms the
layer outputs into (0/1 binary-bit label) prediction outcomes.
Therefore, the prediction obtained from a network can be
evaluated as follows:

sYml = [hi(x), ha(x), ... b ()], (D)
then we can simplify to
Yy = g(H(x)), (@)

where g(-) represents the activation function applied to the
collective output of the hidden layers H (x), yielding the final
predicted labels Y.

i, y2, .-

B. NEURAL NETWORK FOR MULTI-LABEL
CLASSIFICATION

For a classification problem, a network architecture can be
constructed with d inputs and |y| outputs (one for each label).
The number of nodes for an input layer is typically the
features or attributes of a dataset, and the connections of the
input layer to the hidden layer can be different depending on
how many nodes are selected for the hidden layer. The hidden
layer (H) can be decomposed by multiple different layers
stacked together, depending an application. The hidden layer
is connected to the output layer. In a forward pass procedure,
each node in the network convey the information from input
to the output layer. At this point, the network attempts to
learn the sample data that is passed in, and carries out a
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prediction of the data, where the nodes of the output layer are
probabilities that the sample is of a certain multi-label. In the
forward pass and back-propagation procedure (training), the
process continues until a certain number of iterations are met,
or the network converges.

During a network training task, each data instance is
associated with a multi-class labels (y). Thus, this allows the
training process to carry out for generalizing a model using
the information of the predicted label () and the associated
label. An error €, cost E, or loss function / is a key during
the network training process. An optimization procedure
will modify the network’s parameters for its next training
cycle (epoch). The basis of that modification is derived from
the loss function value. The optimization procedure aims
to consistently minimize the value returned from the loss
function, over all epochs.

In multi-label classification problems and in (binary/)
multi-class classification problems, loss functions are similar.
In multi-label classification, the loss function can additionally
consider individual label predictions in a variety of manners
to steer the rate of improvements. This issue underlies
our research. Typically, Binary cross-entropy is a standard
(commonly used) loss function for neural networks and
DNN:s, defined as follows:

1< A
i=1
where

LG = =D yilog®) + (1 - yplog(1 —=3) (@)
j=1

This E determines the distribution of predicted labels ()
and the true labels (y) of data instances. It is intended to use
with binary classification where the target value is O or 1.
It will calculate a difference between the actual and predicted
probability distributions for predicting class 1. The score is
minimized and a perfect value is 0.

Ill. MATERIALS AND METHODS

The main purpose of this work is to develop a technique that
can classify multi-label data efficiently. The key concept to
solve MLC problems, in this work, is to apply a generic neural
network-based technique that can perform the classification
by integrating information about the patterns of labels in
our evaluation datasets. Measurements derived from the
label patterns are used to construct an additional component
of a model’s loss function, which we refer to as Pattern-
Loss term. Constructed in a similar manner to Zhang and
Zhou [45] minimizing penalty in Equation 3. The label
patterns are determined by examining the cardinality and
frequency distribution of the prediction label (Y) in the
data. See detailed explanation of these proposed methods
in subsection III-B. The overall process of the technique
presented in this work is illustrated in Figure 1.
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FIGURE 1. The overall process of the proposed method.
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A. DATASET AND LABEL PATTERN ANALYSIS
This section describes the multi-label datasets (MLD),
analysis of their label patterns and their numerical label
pattern distributions. The proposed method was experimented
on eight datasets. These datasets include seven from the
MULAN [46] repository: birds, enron, emotions, medical,
yeast, scene, and cal500. Additionally, one dataset was
sourced from the foodtruck dataset [47]. There are eight
datasets with different data topologies and domains, shown
in Table 1. Each of the datasets has different characteristics,
such as the number of data instances, the number of features
(data dimensions), number of label bits (per instance),
number of unique label-bit sets, cardinality and density.

In the multi-label context, the cardinality is the mean
proportion of active labels (y) in the set of possible label
bits (Y), defined as:

N
1
Card = N zl lyil (5)
=

and density is an equivalent normalized measure to compare
all datasets. It is cardinality, divided by the number of label
bits | Y|,

Ly

v 2 Wil
i=1
1Y

Each data instance (x;) is associated with a particular
multi-label entity (or label bit set) y;, (for example, y,, =
[0, 1,1, 1, O]y, is associated to x;). Each dataset has a number
of unique label-bit sets (see Label-bit sets column in Table 1).
We refer to each unique label-bit set, as a label-bit — pattern.
The number of unique label-bit patterns can be expressed
as ||P||, where a single pattern (p) and the full (unique) set
of label-bit patterns is given by p € P. Where p = 21,
i.e. is a binary label-bit set, and p is originates from Y. The
frequency characteristics of these patterns will guide our
proposed loss functions penalties, as we will describe in the
following sections.

Where a specific label pattern (y; < yp) is associated to a
corresponding set of data instances (x,), such that y, — x,,
where xp; € x, € X.

For example, the yeast dataset contains 164 unique label
patterns (i.e. y; as a string literal), with which their frequency
can be counted and probability calculated.

The pattern loss of the labeled dataset is informed by the
number and frequency of patterns embedded patterns within

Dens =

(6)
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the data. It can then display the number of labels occurring
for each pattern, for example, the yeast dataset contains
164 pattern labels. Then analyze the number of each pattern
to see how many there are. A histogram of data labels in each
dataset are illustrated in Figure 2.

B. PROPOSED METHODS: INCORPORATING
PATTERN-LOSS

This work proposes two customized loss function techniques
for multi-label classification, i.e. (i) patterns of the label
(POL) and (ii) label similarity (LSIM) - where both utilize
pattern-loss to inform the penalty component of the model’s
loss function. See Algorithm 1 for POL and Algorithm 2
for LSIM.

POL begins by analyzing the patterns of binary labels
denoted as P = {p1,p2,...,pn}, Where n represents the
number of binary label patterns present in the data. The
weighted loss term in the algorithm is divided into two
components: (i) the native term and (ii) the pattern term.
These terms are combined using a weight factor « that ranges
between 0 and 1, determining the relative importance of
each loss term. The loss calculation incorporates both the
native (/,,) and pattern terms (I,,), allowing the algorithm
to appropriately balance their contributions based on the
specified weight o. The computation of POL is demonstrated
in Algorithm 1.

Algorithm 1 The Computational Algorithm of the POL
Method
Input: y, y, P, o
Output: £
Initialisation : € < 0
l:fori < 1to |X|do
2t by < -3 2L (7 log() + (1 — yplog(l — 3))
3: Iy < max(fa(3i, P))
4ie <—e+(axlp)+ 1 —axly)
5: end for
6: L= P](_I X €
7: return £

where f; denotes a distance function. The function cal-
culates the Euclidean distance between the prediction and
a pattern in the training instances, which is defined as
follows:

fa(.p) =

> Gi—pi? (7
1=1

POL intuitively, aims to capture the variability of binary
label patterns within a dataset by considering the predicted
values and the actual values of the labels forming each
pattern. The first loss in POL (denoted as /1) utilizes the
binary cross entropy (or log loss) function. This loss term
is label-independent and accounts for the patterns exhibited
by the data labels in the data. The second loss (/2) serves
to penalize the situation where the predicted labels deviate
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FIGURE 2. Visualized the frequency distributions of the label patterns in each dataset: (a) birds,
(b) enron, (c) emotions, (d) medical, (e) yeast, (f) scene, (g) cal500, and (h) foodtruck.

significantly from the pattern represented by the actual
training labels. This is achieved by penalizing the predicted
labels that deviate the most in the pattern space. The objective
is to encourage the predicted labels to stay close to the overall
label pattern observed in the data. Then, both loss terms
are regularized and weighted using the parameter «. The
resulting loss value, denoted as €, represents the combination
of the two losses. By taking the mean of €, the overall loss of
the POL algorithm is obtained.
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LSIM is introduced as the information that can be used
to generalize the model. LSIM enables the identification
of common feature characteristics among data instances
classified under the same label pattern, while also providing
insights into underlying features. During each training pro-
cess, LSIM examines the similarity between data instances
based on their features. To identify a set of similar instances
S = {x1,.xx} where k is the number of similar members
(set by a predetermined value). S is generated by K-Nearest
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TABLE 1. Characteristics of 8 multi-label datasets (MULAN repository and [47]) used in this research work.

Dataset Domain Instances | Features | Label Bits | Label-bit sets | Cardinality | Density
birds Audio 645 260 19 133 1.014 0.053
enron Text 1702 1001 53 753 3.378 0.064
emotions Music 593 72 6 27 1.869 0.311
medical Text 978 1449 45 94 1.245 0.028
yeast Biology 2417 103 14 198 4.237 0.303
scene Image 2407 294 6 15 1.074 0.179
cal500 Music 502 68 174 34 26.044 0.150
foodtruck [47] Recommend 407 21 12 116 2.290 0.191

Neighbour (KNN) algorithm. Given S, there exists a label
set G = {y1,..yr} associated with S. Then, the loss term is
calculated over the average loss in G and the predicted label,
which is demonstrated in Algorithm 2.

Algorithm 2 The Computational Algorithm of the LSIM
Method
Input: y, vy, G
Output: L
Initialisation: € < 0
1:for i < 1toNdo
s <0
2:forj < 1to Gdo
s < 57 2 logyg) + (1 = yip log(1 = yi))
3: end for
€ «— (I%\)
4: end for
L= ]iv X €
S: return L

LSIM designates the loss function counting the class label
of the similar data instance to the consideration, as described
in Algorithm 2. The standard binary cross-entropy computa-
tion with the true label values and the labels of the (KNN,
k) nearest data instances were used to calculate the (KNN
cluster) localized model loss. In this work, we set k = 3 as
the number of similar data instances of KNN. The final loss
value was calculated as the mean average of all loss values
from the (KNN cluster) localized data instances.

C. EXISTING METHODS
Comparative benchmarks of our proposed methods are
provided by three existing and state-of-the-art multi-label
classification (MLC) techniques, as follows.
Backpropagation for multi-label learning (BP-MLL) [45],
[44]. This feed-forward neural network uses an error function
to capture the correlation among the (MLC) labels. Its error
function penalizes the predictions that include labels that are
not truly relevant to the processed instance. BP-MLL network
parameters used in the experiment are: input layer set to the
number of the input features (attributes), two hidden layers,
and output layer equal to the number of labels. ReLU as the
activation function of the input and hidden layers and the
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Sigmoid function is used at the output layer. BP-MLL used
the cross-entropy loss function scheme.

Multi-label hierarchical adaptive resonance associative
map neural network (ML-HARAM) [48], [49]. This neural
system was initially developed for text datasets with high
dimensionality. Overall, it aims to increase the classification
speed by adding an extra adaptive resonance theory (ART)
layer to the network in order to group the learned prototypes
into large clusters. ML-HARAM’s parameters used in the
experiment are: set vigilance to 0.95 as parameters for adap-
tive resonance theory networks. Define the threshold value
as 0.05, which controls how many prototypes participate in
the prediction.

In the experiment, the parameters of the ANN were set as
follows: the input layer size was determined by the number of
input features (attributes), two hidden layers were employed,
and the output layer size matched the number of labels.
The activation function used for the input and hidden layers
was ReLU, while the Sigmoid function was applied to the
output layer. Additionally, the ANN utilized the MLC binary
cross-entropy loss function and the Adam gradient descent
optimizer.

IV. EXPERIMENTS AND RESULTS

A. EXPERIMENT SETUP

The five techniques were evaluated on multi-label classifica-
tion (MLC) problems. POL and LSIM are the two proposed
(test) methods, see (subsection III-B). ANN has an identical
network architecture and configuration, thus is a control for
the POL and LSIM evaluation. BP-MLL and ML-HARAM
are existing state-of-the-art methods, see (subsection III-C).
Performance is evaluated over eight datasets with input
features ranging from 21 and 1449 dimensions, and label
quantities between 6 and 174, as described in section
(subsection III-A).

All experiments were executed on a machine with an Intel
Core 17-8565U (1.99 GHz) processor, 20.0 GB of memory
and with a Windows 10 operating system. The experiments
were conducted using the SciKit-multilearn open source
Python 3.x library [50].

B. EVALUATION METRICS

Ten common example-based and label-based evaluation
metrics for MLC [51] were selected to quantify performance,
including precision, recall, F1 and Hamming loss with
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TABLE 2. Loss function experiment methods.

Methods Loss-Function

POL See Algorithm 1

LSIM See Algorithm 2

ANN (Control) Binary Cross-Entropy

BP-MLL [45] Binary Cross-Entropy, see Equation
3

ML-HARAM [48], [49] Binary Cross-Entropy

TABLE 3. Experiment parameters.

Experiment constants Value
Datasets 8
Epochs 10

0.8:0.2
k = 5 (non-stratified)

Train : Validation Ratio
Cross Validation Folds

specialized micro and macro variants for MLC. Intuitively,
precision measures the model’s ability not to label a negative
sample as positive, recall is a score to find all positive
samples, F1 is their ratio, where macro and micro variants
are unweighted averages and global totals. Hamming loss is
the fraction of labels incorrectly predicted.

Each evaluation metric relies on the collection and
calculation of true positives (zp;), true negatives (fn;), false
positives (fp;), and false negatives (fi;) obtained for each label
y :j =1[1,..,m]. Macro Fi is the harmonic mean obtained
from Precision and Recall, based on an average of each label
y;j and an average over all labels. Note that, Macro variants
calculate metrics for each label and find their unweighted
mean; which does not take label imbalance into account.
Micro F; is the harmonic mean derived from Micro Precision
and Micro Recall, as given:

1~ |Y;NZ]
Precisi P)= - _ 8
recision (P) . ; 7] (8)
1 ~— |Y;NZ]
Recall (R) = — - 9
ecall R) = ~ ; Vi )
l — |Y;iNZ]
Fl = - - (10)
n 2§;|13|%-|2&
l — Ip;
Macro Precision (Macro P) = — 4 11
( "= ]_Z;‘ ipj + Ipj v
l — 1p;
Macro Recall (Macro R) = — 4 12
( ) mj_zltpﬁfnj (12)
1 < 2xRixP;
Macro F1 = —24 (13)
m ey R; + P;
and the micro- evaluation metric variants:
" tpi
Micro Precision (Micro P/MiP) = S IZ:] : me 7
j=11Pj j=1JPj

(14)
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" tp;
Micro Recall (Micro R/MiR) = —;; Zj—l Jm
21+ 2
(15)
. 2xMiRxMiP
MicroFl = ———— (16)
MiR + MiP

and finally,

IN| |L]
Hamming Loss = NI LI szor(yijvj}ij) A7)
i=1 j=1

C. EXPERIMENT RESULTS

Multi-label classification (MLC) performance was evaluated
over each proposed technique (POL and LSIM) and the
comparative benchmark existing techniques (BP-MLL, ML-
HARAM, ANN), across the eight datasets. Figure 3 and
Tables 4, 5, 6 and 7 show metric results of the methods on
each dataset; as means, standard deviations (& over the cross
validation folds), rank (# as mean and standard deviation %)
where lower is preferred, and percentage of wins (Win %).

D. CLASSIFICATION METRIC PERFORMANCE OF
PROPOSED METHODS

In this work all 10 metrics were calculated. Figure 3 and
Tables 4, 5, 6 and 7 illustrate F1, Macro-F1, Micro-F1, and
Hamming Loss results as a summarization of their MLC
performance.

V. RESULTS ANALYSIS

A. PERFORMANCE SIGNIFICANCE OF PROPOSED
METHODS

Finally, we are interested in investigating the comparative
significance of the existing MLC and proposed techniques in
the experiments. The Bonferroni-Dunn test [52] is employed
as a statistical method to serve the above purpose. Here,
the difference between the average ranks of a proposed
algorithm (control) and one comparable algorithm (test) can
be compared with the following critical difference (CD):

_Jkk+ 1
CD = qu N (13)

For Bonferroni-Dunn test, we have ga = 2.498 at
significance level @ = 0.05 and thus CD = 1.974 (k = 5,
N = 8). Accordingly, the performance between a proposed
algorithm (control) and one comparable method (test) is
deemed to be significantly different if their average ranks over
all datasets differ by at least one CD.

Figure 4 is a critical distance diagram of each technique’s
rank, which illustrates the results of the Bonferroni-Dunn test.
The top line in the diagram is the axis along which the average
rank of each multi-label classifier is plotted, from the lowest
ranks (best performance) on the left to the highest ranks
(worst performance) on the right. Groups of algorithms that
are connected from one another are not statistically different
(i.e. their average rank is within one CD).
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(b) Micro F1 performance - for Precision/Recall balance, as a multi-class task. (1.0 preferred.)
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FIGURE 3. Summary of performance per data. Highlighting proposed methods: LSIM (red) and POL (gray): (a) Macro-F1,
(b) Micro-F1, and (c) Hamming Loss.
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TABLE 4. F1 performance - precision/recall balance. (1.0 preferred).

Datasets BP-MLL | ML-HARAM ANN LSIM POL

birds 0.105 £ 0.027(3) [ 0.131+0.021(2) [ 0.063 + 0.025(5) | 0.100 4 0.033(4) | 0.200 £ 0.052(1)
enron 0.143 £ 0.016(5) | 0.404 £ 0.016(4) | 0.520 + 0.015(2) | 0.529 % 0.014(1) | 0.502 £ 0.010(3)
emotions | 0.320 £ 0.114(4) | 0.374 + 0.058(3) | 0.270 + 0.064(5) | 0.640 £ 0.043(2) | 0.658 £ 0.059(1)
medical | 0.055 + 0.016(5) | 0.568 + 0.050(2) | 0.056 & 0.048(4) | 0.446 & 0.064(3) | 0.729 + 0.046(1)
yeast 0.440 £ 0.050(5) | 0.589 + 0.017(4) | 0.613 +0.016(2) | 0.610 £ 0.0193) | 0.619 £ 0.018(1)
scene 0.306 £ 0.043(3) | 0.334 +0.239(2) | 0.614 +0.030(1) | 0.247 +0.191(5) | 0.302 £ 0.231(4)
cal500 | 0.297 +0.021(4) | 0.235+0.066(5) | 0.314 +0.014(3) | 0341 +0.004(1) | 0.334 £ 0.017(2)
foodiruck | 0.413 £ 0.054(5) [ 0.511 + 0.042(1) | 0.459 + 0.047(4) | 0.503 £ 0.028(2) | 0.500 £ 0.038(3)
Avgrank | 4.25+0383 2.88 4 1.27 3.25 + 1.39 262+ 1.32 20+ 112
Win.% 0.0 0.125 0.125 0.25 0.5

TABLE 5. Macro F1 performance - precision/recall balance, with equal weight per label. (1.0 preferred).

Datasets BP-MLL l ML-HARAM ANN LSIM POL
birds 0.103 £ 0.019(3) | 0.062 + 0.025(5) | 0.068 4= 0.030(4) | 0.124 £ 0.043(2) | 0.362 4 0.035(1)
enron 0.087 £ 0.005(4) | 0.085 £ 0.009(5) | 0.108 £ 0.007(3) | 0.134 £ 0.010(2) | 0.151 £ 0.005(1)
emotions | 0.222 £ 0.119(5) | 0.286 £+ 0.057(3) | 0.251 £0.053(4) | 0.643 £+ 0.044(2) | 0.660 + 0.066(1)
medical 0.043 £ 0.009(4) | 0.126 = 0.022(2) | 0.007 4 0.005(5) | 0.108 £ 0.026(3) | 0.228 4= 0.023(1)
yeast 0.319 £ 0.035(5) | 0.397 £0.016(2) | 0.346 £ 0.008(4) | 0.364 £ 0.008(3) | 0.401 £ 0.013(1)
scene 0.270 £+ 0.060(2) | 0.200 £ 0.093(3) | 0.689 + 0.023(1) | 0.187 £ 0.095(4) | 0.178 £ 0.090(5)
cal500 0.151 +0.011(2) | 0.088 +0.011(3) | 0.045+ 0.003(5) | 0.082 + 0.004(4) | 0.155 £ 0.014(1)
foodtruck | 0.193 £ 0.041(1) | 0.136 £ 0.030(4) | 0.120 £ 0.017(5) | 0.155 £ 0.024(2) | 0.143 £ 0.020(3)
Avg.rank 3.25+1.39 338+ 1.11 3.88+1.27 2.75+£0.83 1.75 + 1.39
Win. % 0.125 0.0 0.125 0.0 0.75
TABLE 6. Micro F1 performance - precision/recall balance, more weight to frequent labels. (1.0 preferred).
Datasets BP-MLL l ML-HARAM ANN LSIM POL
birds 0.276 £ 0.041(3) | 0.207 £ 0.022(4) | 0.153 £0.061(5) | 0.281 £ 0.070(2) | 0.479 £ 0.051(1)
enron 0.146 £ 0.016(5) | 0.416 £ 0.024(4) | 0.544 £0.017(2) | 0.548 £0.013(1) | 0.499 £ 0.013(3)
emotions | 0.336 & 0.109(4) | 0.390 & 0.053(3) | 0.333 4+ 0.054(5) | 0.676 + 0.038(2) | 0.680 % 0.056(1)
medical 0.056 £ 0.016(3) | 0.539 £ 0.038(4) | 0.093 £ 0.075(5) | 0.584 £ 0.054(2) | 0.725 £ 0.045(1)
yeast 0.457 £ 0.050(5) | 0.610 £0.013(4) | 0.637 £ 0.014(3) | 0.639 £ 0.013(2) | 0.640 £ 0.014(1)
scene 0.317 +0.038(3) | 0.331 +0.222(2) | 0.684 +0.024(1) | 0.298 + 0.219(5) | 0.307 £ 0.227(4)
cal500 0.300 £ 0.021(4) | 0.265 £ 0.061(5) | 0.309 £ 0.015(3) | 0.341 £ 0.003(1) | 0.339 £ 0.017(2)
foodtruck | 0.436 £ 0.058(5) | 0.490 £ 0.043(2) | 0.442 £ 0.034(4) | 0.491 £ 0.028(1) | 0.464 £ 0.026(3)
Avg.rank 4.0 +0.87 35+ 1.0 35+ 141 2.0+ 1.22 2.0 +1.12
Win. % 0.0 0.0 0.125 0.375 0.5

TABLE 7. Hamming Loss performance - indicating accuracy, via the number of misclassified labels (0.0 preferred).

VOLUME 12, 2024

Datasets BP-MLL ‘ ML-HARAM ANN LSIM POL

birds 0.049 £ 0.005(3) | 0.094 +0.011(5) | 0.089 £ 0.014(4) | 0.048 £ 0.004(1) | 0.049 £ 0.003(2)
enron 0.463 £+ 0.038(5) | 0.074 +0.003(4) | 0.047 £ 0.002(1) | 0.048 £ 0.002(2) | 0.058 4 0.001(3)
emotions | 0.469 £ 0.117(5) | 0.403 £ 0.036(4) | 0.292 4 0.025(3) | 0.195 +0.021(1) | 0.198 &+ 0.026(2)
medical 0.497 £ 0.038(5) | 0.029 +0.003(4) | 0.027 £ 0.002(3) | 0.017 £ 0.001(2) | 0.014 £ 0.002(1)
yeast 0.418 4 0.043(5) | 0.234 +0.007(4) | 0.198 £ 0.007(2) | 0.196 £ 0.005(1) | 0.209 4 0.008(3)
scene 0.416 + 0.134(5) | 0.286 £ 0.105(4) | 0.100 £ 0.007(1) | 0.207 £ 0.066(2) | 0.238 £ 0.079(3)
cal500 0.460 £ 0.033(5) | 0.180 +0.009(3) | 0.140 £ 0.002(1) | 0.141 £ 0.002(2) | 0.197 £ 0.004(4)
foodtruck | 0.333 +0.092(5) | 0.156 +0.012(3) | 0.173 £ 0.015(4) | 0.154 £ 0.009(1) | 0.155 4 0.010(2)
Avg.rank 4.75 £ 0.66 3.88+0.6 238 +£1.22 1.5+05 2.5+0.87
Win. % 0.0 0.0 0.375 0.5 0.125
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FIGURE 4. Summary comparison of method rank performances using
posthoc analysis with Bonferroni-Dunn statistical test (CD = 0.6245, « =
0.05, k=5, N=80).

Aggregating the algorithms’ average ranks over all met-
rics (10) and all datasets (8), gives the average ranks as
[3.714,3.416, 3.453,2.364, 2.102]. Tables 4, 5, 6 and 7
show four out of the ten metric result sets. Similarly
to [44], these averaged ranks enables a summary significance
analysis of the algorithms’ ranked performance. Therefore,
the Bonferroni-Dunn test with go = 2.498 at significance
level @ = 0.05 and thus CD = 0.6245 (k=5, N=80), is shown
in Figure 4.

V1. DISCUSSION

Fattern-Loss was introduced as a replacement loss function to
assist neural network training to obtain a generalized model.
Our pattern-loss essentially interpolates the optimal network
parameters (w) to converge toward label-patterns exhibited
in the data. The conducted experiments used five different
ANN:-based techniques, including the two proposed methods,
and benchmark methods over eight datasets with different
data topologies to examine the robustness of the methods.

The overall classification performance of positive and
negative label predictions — i.e. the lowest type I/II errors
as determined by balanced precision/recall metric results
are given by the F1 metric variants (see Tables 4,5,6).
Over all datasets, POL has consistently highest average rank
(Avg. Rank) and highest proportion of Win% (rank #1) in
these categories compared to the other techniques. LSIM
has highest average rank and Win% as measured by the
least number of misclassified labels (Hamming Loss, see
Table 7), followed by ANN (with binary cross entropy loss)
and then POL.

The proposed pair of techniques (POL and LSIM) reported
significant critical difference in the average rank summa-
rizing Bonferroni-Dunn (BD) tests, over all metrics and
datasets. Purely in terms of the classification performance
measurements, the BD test reports significant preference for
POL and LSIM loss functions when compared to the other
state-of-art multi-label neural network techniques (BP-MLL,
ML-HARAM), and when compared to the experiment control
(ANN) binary cross-entropy loss function.

VIl. CONCLUSION

This work proposed and evaluated two loss functions,
named POL and LSIM, for classifying multi-label data using
Artificial Neural Networks. The loss functions guide the
learning optimization at the end of each training epoch

52246

by deriving label pattern measurements from the binary
multi-label data. These force predictions towards existing
patterns in the training data. POL loss is decomposed by two
loss terms, Binary Cross Entropy loss (independent) and a
regularized-weighted pattern-based loss. LSIM depends on
cluster-based similarities of the binary label patterns and their
corresponding instance data.

The paper reports on initial stage empirical trials with
statistical benchmark analysis that indicate POL and LSIM
(as a pair) rank significantly higher than three state-of-the-art
methods across eight MLC datasets.
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